
BU CS 332 – Theory of Computation

Lecture 4:
• More on NFAs
• NFAs vs. DFAs
• Closure Properties

Reading:
Sipser Ch 1.1-1.2

Mark Bun

January 31, 2024

https://forms.gle/p6SmhquxaKDe94P39

HW1 + HW0 self-assessment due
tomorrow @ 11:59PM

Diptaksho’s Wednesday office hour:
4:30-6PM (SOC B61)

Test 1: Wednesday 2/21 (not Tue)

Last Time
• Deterministic Finite Automata (DFAs)

• Informal description: State diagram
• Formal description: What are they?
• Formal description: How do they compute?

• A language is regular if it is recognized by a DFA

• Intro to Nondeterministic Finite Automata (NFAs)

1/31/2024 CS332 - Theory of Computation 2

Nondeterminism

1/31/2024 CS332 - Theory of Computation 3

In a DFA, the machine is always in exactly one state upon
reading each input symbol

In a nondeterministic FA, the machine can try out many
different ways of reading the same string
- Next symbol may cause an NFA to “branch” into

multiple possible computations
- Next symbol may cause NFA’s computation to fail to

enter any state at all

Nondeterminism

1/31/2024 CS332 - Theory of Computation 4

1 0

1

0 1

0,1

0

A Nondeterministic Finite Automaton (NFA) accepts if
there exists a way to make it reach an accept state.

Ex. This NFA accepts input 1100, but does not accept input 11

Some special transitions

1/31/2024 CS332 - Theory of Computation 5

0

0, 1

1

-transitions
(don’t consume a symbol)

Multiple
transitions

No transition

Example

1/31/2024 CS332 - Theory of Computation 6

1

0

0

0,1

Example

1/31/2024 CS332 - Theory of Computation 7

10,

a)
b)
c)
d)

0,1

1

Formal Definition of a NFA

1/31/2024 CS332 - Theory of Computation 8

is the set of states
is the alphabet

is the transition function
 is the start state

is the set of accept states

An NFA is a 5-tuple

accepts a string if there exists a path from to
an accept state that can be followed by reading .

Example

1/31/2024 CS332 - Theory of Computation 9

0, 1

0,1

1











Nondeterminism

1/31/2024 CS332 - Theory of Computation 10

Ways to think about
nondeterminism

• (restricted)
parallel
computation

• tree of possible
computations

• guessing and
verifying the
“right” choice

Deterministic
Computation

Nondeterministic
Computation

accept or reject accept

reject

Why study NFAs?
• Not really a realistic model of computation: Real

computing devices can’t really try many possibilities in
parallel

But:

• NFAs can be simpler than DFAs
• Useful for understanding power of DFAs/regular languages
• Lets us study “nondeterminism” as a resource

(cf. P vs. NP)

1/31/2024 CS332 - Theory of Computation 11

NFAs can be simpler than DFAs

1/31/2024 CS332 - Theory of Computation 12

An NFA for this language:

1

0

1
0

A DFA that recognizes the language
:

1

0,1

1

0,1

0

0

Equivalence of NFAs and
DFAs

1/31/2024 CS332 - Theory of Computation 13

Equivalence of NFAs and DFAs
Every DFA is an NFA, so NFAs are at least as powerful as
DFAs

Theorem: For every NFA , there is a DFA such that

Corollary: A language is regular if and only if it is
recognized by an NFA

1/31/2024 CS332 - Theory of Computation 14

Equivalence of NFAs and DFAs (Proof)

1/31/2024 CS332 - Theory of Computation 15

Let  be an NFA

Intuition: Run all threads of in
parallel, maintaining the set of
states where all threads are.

accept

reject

Goal: Construct DFA     recognizing

Formally:

“The Subset Construction”

NFA DFA Example

1/31/2024 CS332 - Theory of Computation 16

1
a b

Subset Construction (Formally, first attempt)

1/31/2024 CS332 - Theory of Computation 17

  for all and .



   





Input: NFA
Output: DFA    

Subset Construction (Formally, for real)

1/31/2024 CS332 - Theory of Computation 18

  for all and .



   



   contains some accept state of

Input: NFA
Output: DFA    

NFA -> DFA Example

1/31/2024 CS332 - Theory of Computation 19

0,1

ε 0
b ca

1

Proving the Construction Works
Claim: For every string , running on leads to state

There exists a computation path
of on input ending at

Proof idea: By induction on

1/31/2024 CS332 - Theory of Computation 20

Historical Note
Subset Construction introduced in Rabin & Scott’s 1959
paper “Finite Automata and their Decision Problems”

1/31/2024 CS332 - Theory of Computation 21

1976 ACM Turing Award citation

For their joint paper "Finite Automata and
Their Decision Problem," which introduced

the idea of nondeterministic machines,
which has proved to be an enormously
valuable concept. Their (Scott & Rabin)

classic paper has been a continuous source
of inspiration for subsequent work in this

field.

NFA DFA: The Catch

If is an NFA with states, how many states does the
DFA obtained using the subset construction have? (In the
worst case.)

a)
b)
c)
d) None of the above

1/31/2024 CS332 - Theory of Computation 22

Is this construction the best we can do?
Subset construction converts an state NFA into a -state
DFA

Could there be a construction that always produces, say, an
-state DFA?

Theorem: For every , there is a language such that
1. There is an -state NFA recognizing .
2. There is no DFA recognizing with fewer than

states.
Conclusion: For finite automata, nondeterminism provides an
exponential savings over determinism (in the worst case).

1/31/2024 CS332 - Theory of Computation 23

