BU CS 332 – Theory of Computation

https://forms.gle/p6SmhquxaKDe94P39

Lecture 4:

- More on NFAs
- NFAs vs. DFAs
- Closure Properties

Reading: Reading:

Sipser Ch 1.1-1.2

HW1 + HW0 self-assessment due

tomorrow @ 11:59PM

Diptaksho's Wednesday office hour:

4:30-6PM (SOC B61)

Test 1: <u>Wednesday</u> 2/21 (not Tue)

HW1 + HW0 self-assessment due tomorrow @ 11:59PM

Diptaksho's Wednesday office hour: 4:30-6PM (SOC B61)

Mark Bun

January 31, 2024 Test 1: Wednesday 2/21 (not Tue)

Last Time

- Deterministic Finite Automata (DFAs)
	- Informal description: State diagram
	- Formal description: What are they?
	- Formal description: How do they compute?
	- A language is regular if it is recognized by a DFA
- Informal description: State diagram
• Formal description: What are they?
• Formal description: How do they compute?
• A language is regular if it is recognized by a DFA
• Intro to Nondeterministic Finite Automata (NFAs) ntro to Nondeterministic Finite Automata (NFAs)
1/31/2024 CS332 - Theory of Computation
2

In a DFA, the machine is always in exactly one state upon reading each input symbol

In a nondeterministic FA, the machine can try out many In a DFA, the machine is always in exactly one state to
reading each input symbol
In a nondeterministic FA, the machine can try out m
different ways of reading the same string
- Next symbol may cause an NFA to "branch" int In a DFA, the machine is always in exactly one state upor
reading each input symbol
In a nondeterministic FA, the machine can try out many
different ways of reading the same string
- Next symbol may cause NFA's computation reading each input symbol

In a nondeterministic FA, the machine can try out many

different ways of reading the same string

- Next symbol may cause an NFA to "branch" into

- Next symbol may cause NFA's computation to fa

- multiple possible computations
- Interent ways or reading the same string

Next symbol may cause an NFA to "branch" into

multiple possible computations

Next symbol may cause NFA's computation to fail to

enter any state at all
 $\frac{1}{3}$
 $\frac{1}{3}$ enter any state at all

Nondeterminism

1
 **1/31/2024 Nondeterministic Finite Automaton (NFA) accepts if

ere exists a way to make it reach an accept state.

This NFA accepts input 1100, but does not accept input 11** there exists a way to make it reach an accept state.

 ε -transitions (don't consume a symbol)

 \bigcirc , \bigcirc No transition \bigcirc No transition 5 $1 / \sqrt{2}$ No transition

Example

$0, \varepsilon$ 1

 \mathbf{N} = a) {w | w contains 101}

b) {w | w contains 11 or 101}

c) {w | w starts with 101}
 $\bigcirc \{w \mid w \text{ starts with 11 or 101}\}\bigcirc \bigcirc \{w \mid w \text{ starts with 11 or 101}\}\bigcirc \bigcirc \{w \mid w \text{ starts with 11 or 101}\}\bigcirc \bigcirc \{w \mid w \text{ starts with 11 or 101}\}\bigcirc \bigcirc \{w \mid w \text{ starts with 11 or 10$ a) $\{w \mid w \text{ contains } 101\}$ b) $\{w \mid w \text{ contains } 11 \text{ or } 101\}$ c) $\{w \mid w$ starts with 101} \widehat{dV} w $|w$ starts with 11 or 101}

0,1

Formal Definition of a NFA
An NFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$ An NFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

 Q is the set of states
 R is the alphabat $\sum_{\text{curv.} \text{state}}$ is the alphabet set of resche $\frac{\delta: Q \times (\Sigma_{\varepsilon}) \to P(Q)}{\delta \delta}$ is the transition function $\overline{q_0} \in Q$ is the start state $F \subseteq Q$ is the set of accept states

 $q_0 \in Q$ is the set of accept states
 $F \subseteq Q$ is the set of accept states
 accepts a string w if **there exists a path** from q_0 to

accept state that can be followed by reading w. M accepts a string w if there exists a path from q_0 to an accept state that can be followed by reading w .

Example $\overline{\mathcal{O},\varepsilon}$ q_2 0,1 $1\sqrt{ }$

- $N = (Q, \Sigma, \delta, q_0, F)$
-
-
-

 $N = (Q, \Sigma, \delta, q_0, F)$
 $\delta(q_0, 0) = \phi$
 $\delta(q_0, 1) = \xi \chi_0, q_1 \xi_1$
 $\delta(q_0, 1) = \xi \chi_0, q_1 \xi_1$
 $\delta(q_1, \epsilon) = \xi q_2 \xi_1$
 $\delta(q_2, 0) = \phi$ $\delta(q_3, 0)$
 $\delta: \mathbb{Q} \times \mathbb{Z}_{\epsilon} \to \mathbb{P}(\mathbb{Q})$ $\frac{\xi q_3 \xi_1}{\xi q_3 \xi_1}$
 $\delta: \mathbb{Q} \times \math$ $\delta(q_0, 1) = \xi \xi_1, \xi_2$ $\delta(q_2, 0) = \phi$ $\delta(q_3)$: $\delta(\boldsymbol{q}_0, \boldsymbol{0}) = \boldsymbol{\phi}$ $\delta(q_1,\varepsilon) = \xi q_2 \xi$

Nondeterminism

Why study NFAs?

• Not really a realistic model of computation: Real computing devices can't really try many possibilities in parallel

But:

- NFAs can be simpler than DFAs
- Useful for understanding power of DFAs/regular languages
- But:
• NFAs can be simpler than DFAs
• Useful for understanding power of DFAs/regular language
• Lets us study "nondeterminism" as a resource
(cf. P vs. NP) (cf. P vs. NP) IFAs can be simpler than DFAs
Iseful for understanding power of DFAs/regular languages
ets us study "nondeterminism" as a resource
(cf. P vs. NP)
1131/2024 CS332 - Theory of Computation 11

NFAs can be simpler than DFAs A DFA that recognizes the language :
:
: 0 1.67 $0 \quad \sim \quad 1$ 1 Ha $\overline{0}$ $1\sqrt{2}$ $1 \text{ NFA for this language: } 1 \text{ NFA for this language: } 0,1$
 $1 \text{ NFA for this language: } 0 \text{ NFA for this language: } 0 \text{ NFA for this language: } 1 \text{ NFA for this language$ 0,1 0,1 An NFA for this language: $1\sqrt{2}$ $0 \quad \sim \quad 1$

Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Every DFA is an NFA, so NFAs are at least as powerful as DFAS Minimaly the, but take rare using formal definitions

Regular larguages \subseteq { languages re. agnizable by NFAS}

Theorem: For every NFA N , there is a DFA M such that

Corollary: A language is regular if and only if it is recognized by an NFA $1/31/2024}$ $1/31/2024}$ CS332 - Theory of Computation 144

Equivalence of NFAs and DFAs (Proof) Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA Equivalence of NFAs and DFAs (Proof)
Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA
Goal: Construct DFA $M = (Q', \Sigma, \delta', q_0', F')$ recognizing $L(N)$

Intuition: Run all threads of N in parallel, maintaining the set of states where all threads are.

Formally: $Q' = P(Q)$

"The Subset Construction"

Subset Construction (Formally, first attempt)

Input: NFA $N = (Q, \Sigma, \delta, q_0, F)$ Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

Subset Construction (Formally, first attempt)

\nInput: NFA
$$
N = (Q, \Sigma, \delta, q_0, F)
$$

\nOutput: DFA $M = (Q', \Sigma, \delta', q_0', F')$ s.t. $L^{(M)} \neq L^{(N)}$

\n $Q' = P(\mathfrak{a}) \geq \{R\} \quad R \leq \mathfrak{A}^3$

\n $\delta' : Q' \times \Sigma \to Q'$

\n $\delta'(R, \sigma) = \bigcup_{r \in R} \delta(r, \sigma)$ for all $R \subseteq Q$ and $\sigma \in \Sigma$.

 $(R, \sigma) = \bigcup_{r \in R} \S(r, \sigma)$ for all $R \subseteq Q$ and $\sigma \in \Sigma$.
 $= \{q\}$
 $= \{q\}$
 $= \{q\} \subseteq \mathbb{Q} \cup \{R \cap \overline{r} \neq \emptyset\}$
 $= \{q\} \subseteq \mathbb{Q} \cup \{R \cap \overline{r} \neq \emptyset\}$
 $= \{q\} \subseteq \mathbb{Q} \cup \{R \cap \overline{r} \neq \emptyset\}$
 $= \{q\} \subseteq \mathbb{Q} \cup \{R \cap \overline{r} \$ $q_0' = \{q_0\}$ $' = \xi$

Subset Construction (Formally, for real)

Input: NFA $N =$ Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

 $\delta'(R,\sigma) = U_{r \in R}$ $\mathcal{E}(\delta(r,\sigma))$ for all $R \subseteq Q$ and $\sigma \in \Sigma$. $Q' = P(Q)$ ubset Construction (Form

uput: NFA $N = (Q, \Sigma, \delta, q_0, F)$

utput: DFA $M = (Q', \Sigma, \delta', q_0)$
 $Q' = P(Q)$
 $Q' = Q'$

 $\begin{aligned} I(R,\sigma) &= \bigcup_{r \in R} \ \ \mathcal{E}(\delta(r,\sigma)) \quad \text{ for all } R \ \subseteq Q \text{ and } \sigma \in \Sigma. \ \ \mathcal{E}(\{q_0\}) & \longrightarrow \bigcirc^{\mathcal{E}} \bigcirc^{\mathcal{E}} \supset \mathcal{E}(\{q_0\}) \ \mathcal{E}(\{q_0\}) & \longrightarrow \bigcirc^{\mathcal{E}} \bigcirc^{\mathcal{E}} \supset \mathcal{E}(\{q_0\}) \end{aligned}$ $q_0' = \mathcal{E}(\{q_0\})$ $F' = \{ R \in Q' \mid R \text{ contains some accept state of } N \}$

Proving the Construction Works

Claim: For every string w , running M on w leads to state

$\{q \in Q |$ There exists a computation path of N on input w ending at q }

Proof idea: By induction on $|w|$ **1/31/2024** CS332 - Theory of Computation 20

Historical Note

Subset Construction introduced in Rabin & Scott's 1959 paper "Finite Automata and their Decision Problems"

1976 ACM Turing Award citation

the idea of nonoeterministic macnines,
which has proved to be an enormously
valuable concept. Their (Scott & Rabin)
classic paper has been a continuous source
of inspiration for subsequent work in this
field. For their joint paper "Finite Automata and **Calcion introduced in Rabin & Scott's 1959**
 Calcion introduced in Rabin & Scott's 1959
 Calcion and their Decision Problems"
 Calcion Problem," which introduced

the idea of nondeterministic machines,

which has pr The internal of their Decision Proble

1976 ACM Turing Award citation

1976 ACM Turing Award c which has proved to be an enormously valuable concept. Their (Scott & Rabin) classic paper has been a continuous source of inspiration for subsequent work in this field.

If N is an NFA with s states, how many states does the DFA obtained using the subset construction have? (In the worst case.)

 $a) s$ b) s^2 c) 2^s worst case.)
a) s
b) s²
c) 2^s = $|P(\omega)|$ whe $|\omega|$ = s
d) None of the above s^2
 $2^s = \left[\mathcal{P}(\mathbb{Q})\right]$ when $|\mathbb{Q}| = s$.

None of the above
 $\frac{1}{31/2024}$ CS332 - Theory of Computation 22

Is this construction the best we can do?

Subset construction converts an s state NFA into a 2^s -state DFA

Could there be a construction that always produces, say, an s^2 -state DFA?

Theorem: For every $s \geq 1$, there is a language L_s such that

-
- 1. There is an $(s + 1)$ -state NFA recognizing L_s .
2. There is no DFA recognizing L_s with fewer than 2^s states.

Conclusion: For finite automata, nondeterminism provides an exponential savings over determinism (in the worst case). **Example 2016 11:** There is an $(s + 1)$ -state NFA recognizing L_s .
 2. There is no DFA recognizing L_s with fewer than 2^s states.
 nclusion: For finite automata, nondeterminism provides an ponential savings over d