BU CS 332 – Theory of Computation

https://forms.gle/EmwazuipdvDh21yLA

- Closure Properties
- Regular Expressions

Reading:

Sipser Ch 1.2-1.3

Mark Bun February 5, 2024

Last Time

- Nondeterministic Finite Automata
- NFAs vs. DFAs
 - Subset construction: NFA → DFA

Closure Properties

An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures

Example: The integers $\mathbb{Z} = \{... - 2, -1, 0, 1, 2, ...\}$ are **closed** under

- Addition: x + y
- Multiplication: $x \times y$
- Negation: -x
- ...but **NOT** Division: x / y

$$-(-7) = 7 \in \mathbb{Z}$$
 $2/7 \notin \mathbb{Z}$

We'd like to investigate similar closure properties of the class of regular languages

Regular operations on languages

Let $A, B \subseteq \Sigma^*$ be languages. Define

Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$

Concatenation: $A \circ B = \{xy \mid x \in A, y \in B\}$ $A \circ A = \{\omega_1 \cup \omega_2 \in A\}$

 $A = \{a, b\}$ $A = \{e, a, b,$ aa, ab, ba, bb, $aaa, aab, --\}$ $B = \{a, b\}$ $B = \{a, b\}$ $A = \{e, a, b\}$ $A = \{e, a, b,$ $aaa, aab, --\}$ $A = \{e, a, b\}$ $A = \{e, a, b, b\}$ $A = \{e, a, b\}$ $A = \{e,$

Other operations

Let $A, B \subseteq \Sigma^*$ be languages. Define

Complement: $\bar{A} = \{ w \mid w \notin A \}$

Intersection: $A \cap B = \{w \mid w \in A \text{ and } w \in B\}$

Reverse: $A^R = \{w \mid w^R \in A\}$

Operations on languages

Let $A, B \subseteq \Sigma^*$ be languages. Define

Regular Operations $\begin{cases} \text{Union: } A \cup B = \{x \mid x \in A \text{ or } x \in B\} \\ \text{Concatenation: } A \circ B = \{xy \mid x \in A, y \in B\} \\ \text{Star: } A^* = \{w_1w_2...w_n \mid n \geq 0 \text{ and } w_i \in A\} \end{cases}$

Complement: $\overline{A} = \{x \mid x \notin A\}$

Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Reverse: $A^R = \{ a_1 a_2 ... a_n | a_n ... a_1 \in A \}$

Theorem: The class of regular languages is closed under all six of these operations, i.e., if A and B are regular, applying any of these operations yields a regular language

Proving Closure Properties

Complement

Complement: $\bar{A} = \{ w | w \notin A \}$

Theorem: If A is regular, then \overline{A} is also regular

Proofidea: A regular => A recognited by some OFA M Use M to construct a rew DFA M' recogniting A Construction of M1: Exchange notes of ucopt & reject states of M

Complement, Formally

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing a language A. Which of the following represents a DFA recognizing \overline{A} ?

- a) $(F, \Sigma, \delta, q_0, Q)$
- (Q, Σ , δ , q_0 , $Q \setminus F$), where $Q \setminus F$ is the set of states in Q that are not in F
 - c) $(Q, \Sigma, \delta', q_0, F)$ where $\delta'(q, s) = p$ such that
 - $\delta(p,s) = q$
 - d) None of the above

Closure under Concatenation

Concatenation: $A \circ B = \{ xy \mid x \in A, y \in B \}$

Theorem. If A and B are regular, then $A \circ B$ is also regular.

Proof idea: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.

Closure under Concatenation

Concatenation: $A \circ B = \{ xy \mid x \in A, y \in B \}$

Theorem. If A and B are regular, then $A \circ B$ is also regular.

Proof idea: Given DFAs M_A and M_B , construct NFA by

• Connecting all accept states in M_A to the start state in M_B .

• Make all states in M_A non-accepting.

A Mystery Construction

Given DFAs M_A recognizing A and M_B recognizing B, what does the

following NFA recognize?

- - b) $A \circ B$
 - c) $A \cap B$
 - d) $\{\varepsilon\} \cup A \cup B$

Closure under Star

Star: $A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$

Theorem. If A is regular, then A^* is also regular.

Closure under Star

Star:
$$A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$$

Theorem. If A is regular, then A^* is also regular.

On proving your own closure properties

You'll have homework/test problems of the form "show that the regular languages are closed under some operation"

What would Sipser do?

- Give the "proof idea": Explain how to take machine(s) recognizing regular language(s) and create a new machine
- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works

Regular Expressions

Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

```
"Simple" languages: \emptyset, \{\varepsilon\}, \{a\} for some a \in \Sigma
```

Regular operations:

Union: $A \cup B$

Concatenation: $A \circ B = \{ab \mid a \in A, b \in B\}$

Star: $A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$

Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

- 1. ε , \emptyset , and α are regular expressions for every $\alpha \in \Sigma$
- 2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1^*)

```
Examples: (over \Sigma = \{a, b, c\})

(a \circ b) ((((a \circ (b^*)) \circ c) \cup (((a^*) \circ b))^*)) (\emptyset^*)
```

Regular Expressions – Semantics

L(R) = the language a regular expression describes

- 1. $L(\emptyset) = \emptyset$
- 2. $L(\varepsilon) = \{\varepsilon\}$
- 3. $L(a) = \{a\}$ for every $a \in \Sigma$
- 4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- 5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- 6. $L((R_1^*)) = (L(R_1))^*$

Regular Expressions – Example

$$L(((\underline{a}^*) \circ (\underline{b}^*))) =$$

a)
$$\{a^nb^n \mid n \ge 0\}$$

b)
$$\{a^m b^n \mid m, n \ge 0\}$$

c)
$$\{(ab)^n \mid n \ge 0\}$$

d)
$$\{a, b\}^*$$

2)
$$L(a^*) = (L(a))^* = \{a\}^* = \{a^n | n > 0\}$$

 $L(b^*) = \{b^n | n > 0\}$

3)
$$L((a^{k}) \circ (b^{k})) = L(a^{k}) \circ L(b^{k})$$

= $\{a^{n} | n \ge 0\} \circ \{b^{n} | n \ge 0\}$
= $\{a^{m} | b^{n} | m, n \ge 0\}$

Simplifying Notation

• Omit • symbol: $(ab) = (a \circ b)$

 Omit many parentheses, since union and concatenation are associative:

$$(a \cup b \cup c) = (a \cup (b \cup c)) = ((a \cup b) \cup c)$$

 Order of operations: Evaluate star, then concatenation, then union

$$ab^* \cup c = (a(b^*)) \cup c$$

Examples

Let
$$\Sigma = \{0, 1\}$$

01000 $\{w \mid w \text{ contains exactly one } 1\}$

Attempt 2.

$$L(1) = \{1\}$$

Attempt 2.

 $L(0^* | 0^*)$
 $= \{0^m | 0^n\}$ m, n = 03

{w | w has length at least 3 and its third symbol is 0}

3. {
$$w \mid \text{every odd position of } w \text{ is 1}}$$

Attempt 1

L(((1(001))*)

L(((1(001))* (102))