BU CS 332 – Theory of Computation

https://forms.gle/EmwazuipdvDh21yLA

Lecture 5:

- Closure Properties
- Regular Expressions

 $\begin{array}{l}\n\boxed{\mathbf{B}}\n\text{S}'\$

Reading:

Mark Bun February 5, 2024

Last Time

- Nondeterministic Finite Automata
- NFAs vs. DFAs
	- Subset construction: $NFA \rightarrow DFA$

Closure Properties

An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures

Example: The integers $\mathbb{Z} = \{... - 2, -1, 0, 1, 2, ...\}$ are closed under

- Addition: $x + y$
- Multiplication: $x \times y$ 24 x (-2) = -48 e^{z}
- Negation: $-x$
- …but NOT Division: x / y

 $7 + (-8) = -1$ $c2$

Multiplication: $x \times y$
 $2^d \times (-2) = -48$ $\in \mathbb{Z}$

Negation: $-x$

...but NOT Division: x / y
 $2 / 7 + 42$

2'd like to investigate similar closure properties of the

ss of regular languages
 $2/5/2024$

CS332 Theory of Com We'd like to investigate similar closure properties of the class of regular languages

Regular operations on languages
 $A = \{a_1, a_2, \ldots, a_n\}$ Let be languages. Define aa, ab, ha, bb, $aaa, aab, -3$ Union: $A \cup B = \{w | w \in A$ or $w \in B\}$ $B = \{aa, b\}$ $B^* = \{E, a_0, b_1\}$ aaaa, aab, Concatenation: $A \circ B = \{xy \mid x \in A, y \in B\}$ $R^{\circ}A^* = \begin{cases} 0, & \text{if } A^* = \{0, 1, 0, 0\} \in \mathbb{R} \} \end{cases}$

20. W. EA for each $i = 1, ..., n$
 $\begin{cases} 0, & \text{if } A^* = \{0, 1, 0, 1, 0\} \end{cases}$
 $\begin{cases} 0, & \text{if } A \in \mathbb{R} \text{ and } \{0, 1, 0\} \end{cases}$
 $\begin{cases} 0, & \text{if } A^* = \{0, 0, 1, 0\} \end{cases}$ Star: $A^* = \{ v_1 v_1 ... v_n \mid n > 0, v_i \in A \text{ for each } i=1, ..., n \}$

Other operations Let $A, B \subseteq \Sigma^*$ be languages. Define

$$
Complement: \bar{A} = \{w \mid w \notin A\}
$$

Intersection: $A \cap B = \{w | w \in A \text{ and } w \in B\}$ $\begin{array}{l} \mathsf{r}}(2/5/2024\end{array} \quad\quad \mathsf{r}}(A\cap B = \{w\ | w\in A \text{ and } w\in B\}$
 $\begin{array}{l} \mathsf{r}}(X^R) = \{w\ | w^R\in A\} \\\\ \begin{array}{ccc} \mathsf{r}}(X^S) & \mathsf{r}(\mathsf{r}}(X^S) & \mathsf{r}(\mathsf{r}) \end{array} \quad\quad \mathsf{r}}(X^S) \end{array}$

Reverse: $A^R = \{w | w^R \in A\}$

Operations on languages Let $A, B \subseteq \Sigma^*$ be languages. Define

Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ Concatenation: $A \circ B$ Star: $A^* = \{ w_1w_2...w_n | n \ge 0 \text{ and } w_i \in A \}$ Complement: $\overline{A} = \{x \mid x \notin A\}$ Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ Reverse: $A^R = \{ a_1 a_2 ... a_n | a_n ... a_1 \in A \}$ Complement: $A = \{x \mid x \in A\}$
Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
Reverse: $A^R = \{a_1a_2...a_n | a_n...a_1 \in A\}$
eorem: The class of regular languages is closed under all six
these operations, i.e., if A and B are regular, Regular **Desimal Operations**

Theorem: The class of regular languages is closed under all six of these operations, i.e., if A and B are regular, applying any of these operations yields a regular language

Proving Closure Properties

Complement

Complement: $\overline{A} = \{ w | w \notin A \}$ **Theorem:** If A is regular, then A is also regular Proof idea: A regular => A recognised by some OFA M
Use M to construct a rew OFA M' recogniting \overline{A} Construction of m' Exchange notes of acapt & reject states of M $\frac{m}{2^{15/2024}}$ Complement, Formally

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing a language A. Which of the following represents a DFA recognizing A ?

a)
$$
(F, \Sigma, \delta, q_0, Q)
$$

\nb) $(Q, \Sigma, \delta, q_0, Q \setminus F)$, where $Q \setminus F$ is the set of states in Q that are not in F
\nc) $(Q, \Sigma, \delta', q_0, F)$ where $\delta'(q, s) = p$ such that $\delta(p, s) = q$
\nd) None of the above
\n δ
\n δ

c) $(Q, \Sigma, \delta', q_0, F)$ where $\delta'(q, s) = p$ such that

Closure under Concatenation

Concatenation: $A \circ B = \{ xy \mid x \in A, y \in B \}$

Theorem. If A and B are regular, then $A \circ B$ is also regular. Proof idea: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.

$$
L(M_A) = \bigotimes_{\text{CS332-Theory of Computation}}
$$

Closure under Concatenation

Concatenation: $A \circ B = \{ xy \mid x \in A, y \in B \}$

Theorem. If A and B are regular, then $A \circ B$ is also regular. Proof idea: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.

A Mystery Construction

Given DFAs M_A recognizing A and M_B recognizing B, what does the following NFA recognize?

Closure under Star

Star:
$$
A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}
$$

Closure under Star

$$
Star: A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}
$$

On proving your own closure properties

You'll have homework/test problems of the form "show that

the regular languages are closed under some operation"

Coven cp(A,B) on lagrages, slas i If A,B ae arbitrony ngular langs, On proving your own closure prop
You'll have homework/test problems of the form the regular languages are closed under some
Coven $Q(A, B)$ or layers and the some than $Q(A, B)$
What would Sipser do?
- Give the "proof idea": VOIT DIVITIB YOUT OWLL CLOSUTE DITOPET LIES

You'll have homework/test problems of the form "show that

the regular languages are closed under some operation"

Coven $\phi(A, b)$ in lagacing $\phi(A, b)$ is the set of the substan From the regular languages are closed under some operation"
 ω_{max} ω_{max} and ω_{max} are construction works what would Sipser do?
 ω_{max} what would Sipser do?
 ω_{max} what would Sipser do?
 ω_{max} - Give a formal description of the construction

- recognizing regular language(s) and create a new machine What would Sipser do?

- Give the "proof idea": Explain how to take machine(s)

recognizing regular language(s) and create a new machine

- Explain in a few sentences why the construction works

- Give a formal descriptio cognizing regular language(s) and create a new machine

explain in a few sentences why the construction works

ive a formal description of the construction

o need to formally prove that the construction works

into power
-
-
-

Regular Expressions

Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

"Simple" languages: \emptyset , $\{\varepsilon\}$, $\{\alpha\}$ for some $\alpha \in \Sigma$ Regular operations:

Union: $A \cup B$ Concatenation: $A \circ B$ Star: $A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$ mple" languages: ψ , { \mathcal{E} }, { a } for some $a \in \mathcal{Z}$
gular operations:

Union: $A \cup B$
Concatenation: $A \circ B = \{ab \mid a \in A, b \in B\}$
Star: $A^* = \{a_1a_2...a_n \mid n \ge 0 \text{ and } a_i \in A\}$

 $\text{S332-Theory of Computation}$

Regular Expressions – Syntax
A regular expression R is defined recursively using the A regular expression R is defined recursively using the following rules:

- 1. ε , \emptyset , and a are regular expressions for every $a \in \Sigma$
- A regular expression *R* is defined recursively using the
following rules:
1. ε , \emptyset , and *a* are regular expressions for every $a \in \Sigma$
2. If R_1 and R_2 are regular expressions, then so are
 $(R_1 \cup R_2)$, $(R_1 \circ R$ $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1^*)

Examples: (over $\Sigma = \{a, b, c\}$) If R_1 and R_2 are regular expressions, then so are
 $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1^*)

amples: (over $\Sigma = \{a, b, c\}$)
 $(\circ \ b)$ $(((a \circ (b^*)) \circ c) \cup (((a^*) \circ b))^*))$ (\emptyset^*)
 (\circ)
 (\circ)
 (\circ)

Regular Expressions – Semantics
 $L(R)$ = the language a regular expression describes

 $L(R)$ = the language a regular expression describes

1.
$$
L(\emptyset) = \emptyset
$$

$$
2. \quad L(\varepsilon) = \{\varepsilon\}
$$

- 3. $L(a) = \{a\}$ for every $a \in \Sigma$
-
- $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
 $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
 $L((R_1^*)) = (L(R_1))^*$
 $(25)2024$ CS332 Theory of Computation 20
- 6. $L((R_1^*)=(L(R_1))^*$

Regular Expressions – Example
Regular Expressions – Example
L(((a*) \circ (b*))) =

- a) $\{a^n b^n \mid n \geq 0\}$
- b) $\{a^m b^n \mid m, n \ge 0\}$
- c) $\{(ab)^n \mid n \geq 0\}$
- d) $\{a, b\}^*$

1) $L(a) = \{a\}$ $L(b) = \{b\}$ 2) $L(a^{*}) = (L(a))^{*} = \{a\}^{*} = \{a^{n} | a^{n}0\}$ $\{(ab)^n | n \ge 0\}$
 $\{a,b\}^*$
 $\{(a)^n : n \ge 0\}$
 $\{(a)^n : (a^*) \circ (b^*)\}$
 $\{(a^*) \circ (b^*)\}$

$$
=\frac{1}{2}a^m b^n |m,n>0^2
$$

Simplifying Notation

- Omit \circ symbol: $(ab) = (a \circ b)$
- Omit many parentheses, since union and concatenation are associative:

 $(a \cup b \cup c) = (a \cup (b \cup c)) = ((a \cup b) \cup c)$

• Order of operations: Evaluate star, then concatenation, then union Order of operations: Evaluate star, then concatenation,

hen union
 $ab^* \cup c = (a(b^*)) \cup c$
 $\begin{array}{c} \text{C3332 - Theory of Computation} \end{array}$

$$
ab^* \cup c = (a(b^*)) \cup c
$$

Examples

Let $\Sigma = \{0, 1\}$

 $Afterw1'$ 01000 \mathbf{O} $L(I) = 51$ $\{w \mid w \text{ contains exactly one } 1\}$ Attempt 2 $L(0^* | 0^*)$
= $50^* | 0^*$
= $50^* | 0^n | 0^n$
m, n 303

2. $\{w | w$ has length at least 3 and its third symbol is 0}

3. $\{w \mid \text{every odd position of } w \text{ is } 1\}$ $\begin{array}{c} \begin{array}{c} \text{217/2024} \end{array} \end{array}$ CS332 - Theory of Computation