BU CS 332 – Theory of Computation

https://forms.gle/EmwazuipdvDh21yLA

Lecture 5:

- Closure Properties
- Regular Expressions

Reading: Sipser Ch 1.2-1.3

Mark Bun February 5, 2024

Last Time

- Nondeterministic Finite Automata
- NFAs vs. DFAs
 - Subset construction: NFA \rightarrow DFA

Closure Properties

An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures

Example: The integers $\mathbb{Z} = \{... - 2, -1, 0, 1, 2, ...\}$ are **closed** under

- Addition: x + y
- Multiplication: $x \times y$
- Negation: -x
- ...but NOT Division: x / y

We'd like to investigate similar closure properties of the class of regular languages

Regular operations on languages Let $A, B \subseteq \Sigma^*$ be languages. Define

Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$

Concatenation: $A \circ B = \{xy | x \in A, y \in B\}$

Star: $A^* =$

Other operations Let $A, B \subseteq \Sigma^*$ be languages. Define

Complement: $\overline{A} = \{w \mid w \notin A\}$

Intersection: $A \cap B = \{w | w \in A \text{ and } w \in B\}$

Reverse: $A^R = \{w | w^R \in A\}$

Operations on languages Let $A, B \subseteq \Sigma^*$ be languages. Define

Regular Operations $\begin{cases} Union: A \cup B = \{x \mid x \in A \text{ or } x \in B\} \\ Concatenation: A \circ B = \{xy \mid x \in A, y \in B\} \\ Star: A^* = \{w_1w_2...w_n \mid n \ge 0 \text{ and } w_i \in A\} \\ Star: A^* = \{w_1w_2...w_n \mid n \ge 0 \text{ and } w_i \in A\} \\ Complement: \overline{A} = \{x \mid x \notin A\} \\ Intersection: A \cap B = \{x \mid x \notin A \text{ and } x \in B\} \\ Reverse: A^R = \{a_1a_2...a_n \mid a_n...a_1 \in A\} \end{cases}$

Theorem: The class of regular languages is closed under all six of these operations, i.e., if *A* and *B* are regular, applying any of these operations yields a regular language

Proving Closure Properties

Complement

Complement: $\overline{A} = \{ w | w \notin A \}$ **Theorem:** If A is regular, then \overline{A} is also regular Proof idea:

Complement, Formally

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing a language A. Which of the following represents a DFA recognizing \overline{A} ?

- a) $(F, \Sigma, \delta, q_0, Q)$
- b) $(Q, \Sigma, \delta, q_0, Q \setminus F)$, where $Q \setminus F$ is the set of states in Q that are not in F
- c) $(Q, \Sigma, \delta', q_0, F)$ where $\delta'(q, s) = p$ such that $\delta(p, s) = q$
- d) None of the above

Closure under Concatenation

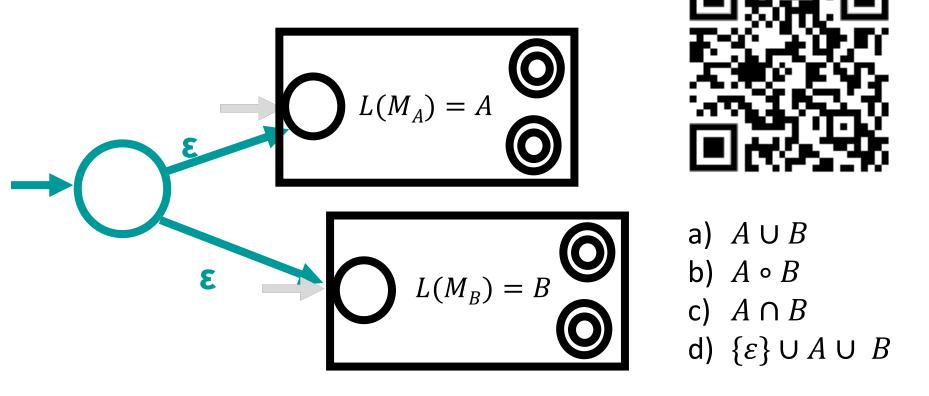
Concatenation: $A \circ B = \{ xy | x \in A, y \in B \}$

Theorem. If A and B are regular, then $A \circ B$ is also regular. Proof idea: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.

$$L(M_A) = A = A = L(M_B) = B = B$$

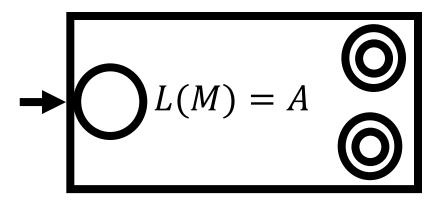
Closure under Concatenation


Concatenation: $A \circ B = \{ xy | x \in A, y \in B \}$

Theorem. If A and B are regular, then $A \circ B$ is also regular. Proof idea: Given DFAs M_A and M_B , construct NFA by

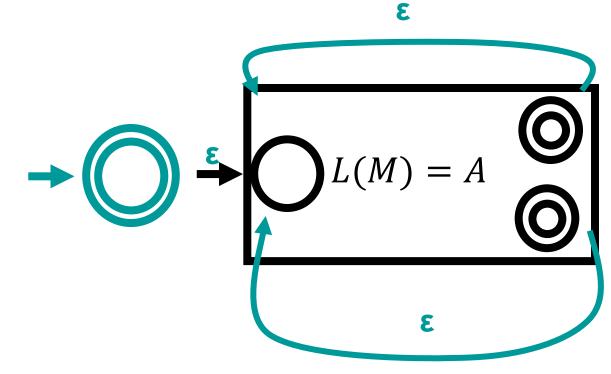
- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.

A Mystery Construction


Given DFAs M_A recognizing A and M_B recognizing B, what does the following NFA recognize?

Closure under Star

Star:
$$A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$$


Theorem. If A is regular, then A^* is also regular.

Closure under Star

Star:
$$A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$$

Theorem. If A is regular, then A^* is also regular.

On proving your own closure properties

You'll have homework/test problems of the form "show that the regular languages are closed under some operation"

What would Sipser do?

- Give the "proof idea": Explain how to take machine(s) recognizing regular language(s) and create a new machine
- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works

Regular Expressions

Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

"Simple" languages: \emptyset , $\{\varepsilon\}$, $\{a\}$ for some $a \in \Sigma$ Regular operations:

> Union: $A \cup B$ Concatenation: $A \circ B = \{ab \mid a \in A, b \in B\}$ Star: $A^* = \{a_1a_2...a_n \mid n \ge 0 \text{ and } a_i \in A\}$

Regular Expressions – Syntax

A regular expression *R* is defined recursively using the following rules:

1. ε , \emptyset , and a are regular expressions for every $a \in \Sigma$

2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2), (R_1 \circ R_2), \text{ and } (R_1^*)$

Examples: (over $\Sigma = \{a, b, c\}$) ($a \circ b$) (((($a \circ (b^*)$) $\circ c$) \cup (((a^*) $\circ b$))*)) (\emptyset^*)

Regular Expressions – Semantics

L(R) = the language a regular expression describes

1.
$$L(\emptyset) = \emptyset$$

2.
$$L(\varepsilon) = \{\varepsilon\}$$

- 3. $L(a) = \{a\}$ for every $a \in \Sigma$
- 4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- 5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- 6. $L((R_1^*)) = (L(R_1))^*$

Regular Expressions – Example $L(((a^*) \circ (b^*))) =$

- a) $\{a^n b^n \mid n \ge 0\}$
- b) $\{a^m b^n \mid m, n \ge 0\}$
- c) $\{(ab)^n \mid n \ge 0\}$
- d) $\{a, b\}^*$

Simplifying Notation

- Omit symbol: $(ab) = (a \circ b)$
- Omit many parentheses, since union and concatenation are associative:

 $(a \cup b \cup c) = (a \cup (b \cup c)) = ((a \cup b) \cup c)$

• Order of operations: Evaluate star, then concatenation, then union

 $ab^* \cup c = (a(b^*)) \cup c$

Examples

Let $\Sigma = \{0, 1\}$

1. { $w \mid w$ contains exactly one 1}

2. $\{w \mid w \text{ has length at least 3 and its third symbol is 0}\}$

3. {w | every odd position of w is 1}

Syntactic Sugar

• For alphabet Σ , the regex Σ represents $L(\Sigma) = \Sigma$

• For regex R, the regex $R^+ = RR^*$

Regexes in the Real World

grep = globally search for a regular expression and print matching lines

	'^xy*z' myfile
xyz	
xyzde	
XZZ	
xz	
xyyz	
xyyyz	
xyyyyz	
	'^x.*z' myfile
xyz	
xyzde	
xxz	
XZZ	
x\z	
X*Z	
xz	
X Z	
xYz	
xyyz	
xyyyz	
xyyyyz	
	'^x*z' myfile
x*z	
	'\\' myfile
x\z	
\$	

Equivalence of Regular Expressions, NFAs, and DFAs Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Base cases:

 $R = \emptyset$

 $R = \varepsilon$

R = a

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

What should the inductive hypothesis be?

- a) Suppose **some** regular expression of length k can be converted to an NFA
- b) Suppose **every** regular expression of length k can be converted to an NFA
- c) Suppose **every** regular expression of length **at most** *k* can be converted to an NFA
- d) None of the above

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Inductive step:

$$R = (R_1 \cup R_2)$$

$$R = (R_1 R_2)$$

$$R = (R_1^*)$$

Example

Convert $(1(0 \cup 1))^*$ to an NFA