BU CS 332 – Theory of Computation

<https://forms.gle/EmwazuipdvDh21yLA>

Lecture 5:

- Closure Properties
- Regular Expressions

Reading: Sipser Ch 1.2-1.3

Mark Bun February 5, 2024

Last Time

- Nondeterministic Finite Automata
- NFAs vs. DFAs
	- Subset construction: NFA \rightarrow DFA

Closure Properties

An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures

Example: The integers $\mathbb{Z} = \{... - 2, -1, 0, 1, 2, ...\}$ are **closed** under

- Addition: $x + y$
- Multiplication: $x \times y$
- Negation: $-x$
- ...but NOT Division: x / y

We'd like to investigate similar closure properties of the class of regular languages

Regular operations on languages Let $A, B \subseteq \Sigma^*$ be languages. Define

Union: $A \cup B = \{w | w \in A \text{ or } w \in B\}$

Concatenation: $A \circ B = \{xy \mid x \in A, y \in B\}$

Star: $A^* =$

Other operations Let $A, B \subseteq \Sigma^*$ be languages. Define

Complement: $A = \{w | w \notin A\}$

Intersection: $A \cap B = \{w | w \in A \text{ and } w \in B\}$

Reverse: $A^R = \{w | w^R \in A\}$

Operations on languages Let $A, B \subseteq \Sigma^*$ be languages. Define

Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ Concatenation: $A \circ B = \{xy \mid x \in A, y \in B\}$ Star: $A^* = \{ w_1w_2...w_n | n \ge 0 \text{ and } w_i \in A \}$ Complement: $\overline{A} = \{x \mid x \notin A\}$ Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ Reverse: $A^R = \{ a_1 a_2 ... a_n | a_n ... a_1 \in A \}$ { Regular **Operations**

Theorem: The class of regular languages is closed under all six of these operations, i.e., if A and B are regular, applying any of these operations yields a regular language

Proving Closure Properties

Complement

Complement: $\overline{A} = \{ w | w \notin A \}$ **Theorem:** If A is regular, then \overline{A} is also regular Proof idea:

Complement, Formally

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing a language A . Which of the following represents a DFA recognizing A ?

- a) $(F, \Sigma, \delta, q_0, Q)$
- b) $(Q, \Sigma, \delta, q_0, Q \setminus F)$, where $Q \setminus F$ is the set of states in Q that are not in F
- c) $(Q, \Sigma, \delta', q_0, F)$ where $\delta'(q, s) = p$ such that $\delta(p, s) = q$
- d) None of the above

Closure under Concatenation

Concatenation: $A \circ B = \{ xy \mid x \in A, y \in B \}$

Theorem. If A and B are regular, then $A \circ B$ is also regular. Proof idea: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.

$$
L(M_A) = A \begin{matrix} 0 \\ 0 \end{matrix} \longrightarrow L(M_B) = B \begin{matrix} 0 \\ 0 \end{matrix}
$$

Closure under Concatenation

Concatenation: $A \circ B = \{ xy \mid x \in A, y \in B \}$

Theorem. If A and B are regular, then $A \circ B$ is also regular. Proof idea: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.

$$
L(M_A) = A \sum_{\epsilon} L(M_{\epsilon}) = B
$$

A Mystery Construction

Given DFAs M_A recognizing A and M_B recognizing B, what does the following NFA recognize?

Closure under Star

Star:
$$
A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}
$$

Theorem. If A is regular, then A^* is also regular.

Closure under Star

Star:
$$
A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}
$$

Theorem. If A is regular, then A^* is also regular.

On proving your own closure properties

You'll have homework/test problems of the form "show that the regular languages are closed under some operation"

What would Sipser do?

- Give the "proof idea": Explain how to take machine(s) recognizing regular language(s) and create a new machine
- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works

Regular Expressions

Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

"Simple" languages: \emptyset , $\{\varepsilon\}$, $\{\alpha\}$ for some $\alpha \in \Sigma$ Regular operations:

> Union: $A \cup B$ Concatenation: $A \circ B = \{ab \mid a \in A, b \in B\}$ Star: $A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$

Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

1. ε , \emptyset , and α are regular expressions for every $\alpha \in \Sigma$

2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1^*)

Examples: (over $\Sigma = \{a, b, c\}$) $(a \circ b)$ $((((a \circ (b^*)) \circ c) \cup (((a^*) \circ b))^*))$ (\emptyset^*)

Regular Expressions – Semantics

 $L(R)$ = the language a regular expression describes

$$
1. \quad L(\emptyset) = \emptyset
$$

$$
2. \quad L(\varepsilon) = \{\varepsilon\}
$$

- 3. $L(a) = {a}$ for every $a \in \Sigma$
- 4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- 5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- 6. $L((R_1^*)=(L(R_1))^*$

Regular Expressions – Example $L(((a^*) \circ (b^*))) =$

- a) $\{a^n b^n \mid n \geq 0\}$
- b) $\{a^m b^n \mid m, n \geq 0\}$
- c) $\{(ab)^n \mid n \ge 0\}$
- d) ${a, b}^*$

Simplifying Notation

- Omit ∘ symbol: $(ab) = (a \circ b)$
- Omit many parentheses, since union and concatenation are associative:

 $(a \cup b \cup c) = (a \cup (b \cup c)) = ((a \cup b) \cup c)$

• Order of operations: Evaluate star, then concatenation, then union

 $ab^* \cup c = (a(b^*)) \cup c$

Examples

Let $\Sigma = \{0, 1\}$

1. $\{w \mid w \text{ contains exactly one } 1\}$

2. $\{w \mid w$ has length at least 3 and its third symbol is $0\}$

3. $\{w \mid \text{every odd position of } w \text{ is } 1\}$

Syntactic Sugar

• For alphabet Σ , the regex Σ represents $L(\Sigma) = \Sigma$

• For regex R, the regex $R^+ = RR^*$

Regexes in the Real World

 green = globally search for a regular expression and print matching lines

Equivalence of Regular Expressions, NFAs, and DFAs Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Base cases:

 $R = \emptyset$

 $R = \varepsilon$

$R = a$

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

What should the inductive hypothesis be?

- a) Suppose **some** regular expression of length k can be converted to an NFA
- b) Suppose **every** regular expression of length k can be converted to an NFA
- c) Suppose **every** regular expression of length **at most** can be converted to an NFA
- d) None of the above

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Inductive step:

$$
R = (R_1 \cup R_2)
$$

$$
R = (R_1 R_2)
$$

$$
R = (R_1^*)
$$

Example Convert $(1(0\cup 1))^*$ to an NFA