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Last Time
• Nondeterministic Finite Automata
• NFAs vs. DFAs

• Subset construction: NFA → DFA
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Closure Properties
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An Analogy
In algebra, we try to identify operations which are 
common to many different mathematical structures
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Example: The integers ℤ = {…− 2,−1, 0, 1, 2, … } are 
closed under 
• Addition: 𝑥𝑥 +  𝑦𝑦
• Multiplication: 𝑥𝑥 × 𝑦𝑦
• Negation: −𝑥𝑥
• …but NOT Division: 𝑥𝑥 / 𝑦𝑦

We’d like to investigate similar closure properties of the 
class of regular languages



Regular operations on languages
Let 𝐴𝐴,𝐵𝐵 ⊆ Σ∗ be languages. Define

Union: 𝐴𝐴 ∪ 𝐵𝐵 = 𝑤𝑤 𝑤𝑤 ∈ 𝐴𝐴 𝐨𝐨𝐨𝐨 𝑤𝑤 ∈ 𝐵𝐵}

Concatenation: 𝐴𝐴 ∘ 𝐵𝐵 = 𝑥𝑥𝑥𝑥 𝑥𝑥 ∈ 𝐴𝐴,𝑦𝑦 ∈ 𝐵𝐵}

Star: 𝐴𝐴∗ =
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Other operations
Let 𝐴𝐴,𝐵𝐵 ⊆ Σ∗ be languages. Define

Complement: 𝐴̅𝐴 = 𝑤𝑤 𝑤𝑤 ∉ 𝐴𝐴}

Intersection: 𝐴𝐴 ∩ 𝐵𝐵 = 𝑤𝑤 𝑤𝑤 ∈ 𝐴𝐴 𝐚𝐚𝐚𝐚𝐚𝐚 𝑤𝑤 ∈ 𝐵𝐵}

Reverse: 𝐴𝐴𝑅𝑅 = 𝑤𝑤 𝑤𝑤𝑅𝑅 ∈ 𝐴𝐴}
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Operations on languages
Let 𝐴𝐴,𝐵𝐵 ⊆ Σ∗ be languages. Define

Union: 𝐴𝐴 ∪ 𝐵𝐵 = {𝑥𝑥 ∣ 𝑥𝑥 ∈ 𝐴𝐴 or 𝑥𝑥 ∈ 𝐵𝐵}
Concatenation: 𝐴𝐴 ∘ 𝐵𝐵 = 𝑥𝑥𝑥𝑥 𝑥𝑥 ∈ 𝐴𝐴,𝑦𝑦 ∈ 𝐵𝐵}
Star: 𝐴𝐴∗ = { 𝑤𝑤1𝑤𝑤2…𝑤𝑤𝑛𝑛|𝑛𝑛 ≥ 0 and 𝑤𝑤𝑖𝑖 ∈ 𝐴𝐴}

Complement: 𝐴̅𝐴 = {𝑥𝑥 ∣ 𝑥𝑥 ∉ 𝐴𝐴}
Intersection: 𝐴𝐴 ∩ 𝐵𝐵 = {𝑥𝑥 ∣ 𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ 𝐵𝐵}
Reverse: 𝐴𝐴𝑅𝑅 = { 𝑎𝑎1𝑎𝑎2…𝑎𝑎𝑛𝑛|𝑎𝑎𝑛𝑛…𝑎𝑎1 ∈ 𝐴𝐴}

Theorem: The class of regular languages is closed under all six 
of these operations, i.e., if 𝐴𝐴 and 𝐵𝐵 are regular, applying any of 
these operations yields a regular language
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{Regular
Operations



Proving Closure Properties
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Complement
Complement: 𝐴̅𝐴 = 𝑤𝑤 𝑤𝑤 ∉ 𝐴𝐴}
Theorem: If 𝐴𝐴 is regular, then 𝐴̅𝐴 is also regular
Proof idea:
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Complement, Formally

Let 𝑀𝑀 = (𝑄𝑄, Σ, 𝛿𝛿, 𝑞𝑞0,𝐹𝐹) be a DFA recognizing a language 
𝐴𝐴. Which of the following represents a DFA recognizing 𝐴̅𝐴?

a) (𝐹𝐹, Σ, 𝛿𝛿, 𝑞𝑞0,𝑄𝑄)
b) (𝑄𝑄,Σ, 𝛿𝛿, 𝑞𝑞0,𝑄𝑄 ∖ 𝐹𝐹), where 𝑄𝑄 ∖ 𝐹𝐹 is the set of states in 

𝑄𝑄 that are not in 𝐹𝐹
c) (𝑄𝑄,Σ, 𝛿𝛿𝛿, 𝑞𝑞0,𝐹𝐹) where 𝛿𝛿𝛿(𝑞𝑞, 𝑠𝑠) = 𝑝𝑝 such that 

𝛿𝛿(𝑝𝑝, 𝑠𝑠) = 𝑞𝑞
d) None of the above
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Closure under Concatenation
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Concatenation: 𝐴𝐴 ∘ 𝐵𝐵 =  𝑥𝑥𝑥𝑥 𝑥𝑥 ∈ 𝐴𝐴,𝑦𝑦 ∈ 𝐵𝐵 }
Theorem. If 𝐴𝐴 and 𝐵𝐵 are regular, then 𝐴𝐴 ∘ 𝐵𝐵 is also regular. 
Proof idea: Given DFAs 𝑀𝑀𝐴𝐴 and 𝑀𝑀𝐵𝐵, construct NFA by 
• Connecting all accept states in 𝑀𝑀𝐴𝐴 to the start state in 𝑀𝑀𝐵𝐵.
• Make all states in 𝑀𝑀𝐴𝐴 non-accepting.

𝐿𝐿(𝑀𝑀𝐴𝐴) = 𝐴𝐴 𝐿𝐿(𝑀𝑀𝐵𝐵) = 𝐵𝐵



Closure under Concatenation

2/5/2024 CS332 - Theory of Computation 12

Concatenation: 𝐴𝐴 ∘ 𝐵𝐵 =  𝑥𝑥𝑥𝑥 𝑥𝑥 ∈ 𝐴𝐴,𝑦𝑦 ∈ 𝐵𝐵 }
Theorem. If 𝐴𝐴 and 𝐵𝐵 are regular, then 𝐴𝐴 ∘ 𝐵𝐵 is also regular. 
Proof idea: Given DFAs 𝑀𝑀𝐴𝐴 and 𝑀𝑀𝐵𝐵, construct NFA by 
• Connecting all accept states in 𝑀𝑀𝐴𝐴 to the start state in 𝑀𝑀𝐵𝐵.
• Make all states in 𝑀𝑀𝐴𝐴 non-accepting.

ε

ε
𝐿𝐿(𝑀𝑀𝐴𝐴) = 𝐴𝐴 𝐿𝐿(𝑀𝑀𝐵𝐵) = 𝐵𝐵



A Mystery Construction
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ε

ε

𝐿𝐿(𝑀𝑀𝐴𝐴) = 𝐴𝐴

𝐿𝐿(𝑀𝑀𝐵𝐵) = 𝐵𝐵

Given DFAs 𝑀𝑀𝐴𝐴 recognizing 𝐴𝐴 and 𝑀𝑀𝐵𝐵 recognizing 𝐵𝐵, what does the 
following NFA recognize?

a)  𝐴𝐴 ∪ 𝐵𝐵
b)  𝐴𝐴 ∘ 𝐵𝐵
c)  𝐴𝐴 ∩ 𝐵𝐵
d)  {𝜀𝜀} ∪ 𝐴𝐴 ∪  𝐵𝐵



Closure under Star
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Star: 𝐴𝐴∗ = { 𝑎𝑎1𝑎𝑎2…𝑎𝑎𝑛𝑛|𝑛𝑛 ≥ 0 and 𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴}

Theorem. If 𝐴𝐴 is regular, then 𝐴𝐴∗ is also regular. 

𝐿𝐿(𝑀𝑀) = 𝐴𝐴



Closure under Star
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Star: 𝐴𝐴∗ = { 𝑎𝑎1𝑎𝑎2…𝑎𝑎𝑛𝑛|𝑛𝑛 ≥ 0 and 𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴}

Theorem. If 𝐴𝐴 is regular, then 𝐴𝐴∗ is also regular. 

𝐿𝐿(𝑀𝑀) = 𝐴𝐴ε

ε

ε



On proving your own closure properties

You’ll have homework/test problems of the form “show that 
the regular languages are closed under some operation”

What would Sipser do?
- Give the “proof idea”: Explain how to take machine(s) 

recognizing regular language(s) and create a new machine
- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works

2/5/2024 CS332 - Theory of Computation 16



Regular Expressions
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Regular Expressions
• A different way of describing regular languages
• A regular expression expresses a (possibly complex) 

language by combining simple languages using the 
regular operations

“Simple” languages: ∅, 𝜀𝜀 , {𝑎𝑎} for some 𝑎𝑎 ∈ Σ
Regular operations:

Union: 𝐴𝐴 ∪ 𝐵𝐵
Concatenation: 𝐴𝐴 ∘ 𝐵𝐵 = 𝑎𝑎𝑎𝑎 𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵}
Star: 𝐴𝐴∗ = { 𝑎𝑎1𝑎𝑎2…𝑎𝑎𝑛𝑛|𝑛𝑛 ≥ 0 and 𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴}
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Regular Expressions – Syntax
A regular expression 𝑅𝑅 is defined recursively using the 
following rules:

1. 𝜀𝜀, ∅, and 𝑎𝑎 are regular expressions for every 𝑎𝑎 ∈ Σ

2. If 𝑅𝑅1 and 𝑅𝑅2 are regular expressions, then so are
(𝑅𝑅1∪ 𝑅𝑅2), (𝑅𝑅1∘ 𝑅𝑅2), and (𝑅𝑅1∗)

Examples: (over Σ = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐})
𝑎𝑎 ∘ 𝑏𝑏 ((((𝑎𝑎 ∘ (𝑏𝑏∗)) ∘ 𝑐𝑐) ∪ (((𝑎𝑎∗) ∘ 𝑏𝑏))∗)) (∅∗)
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Regular Expressions – Semantics 
𝐿𝐿(𝑅𝑅) = the language a regular expression describes

1. 𝐿𝐿(∅) = ∅
2. 𝐿𝐿 𝜀𝜀 = 𝜀𝜀
3. 𝐿𝐿(𝑎𝑎) = {𝑎𝑎} for every 𝑎𝑎 ∈ Σ
4. 𝐿𝐿((𝑅𝑅1∪ 𝑅𝑅2)) = 𝐿𝐿(𝑅𝑅1) ∪ 𝐿𝐿(𝑅𝑅2)
5. 𝐿𝐿((𝑅𝑅1∘ 𝑅𝑅2)) = 𝐿𝐿(𝑅𝑅1) ∘ 𝐿𝐿(𝑅𝑅2)
6. 𝐿𝐿 𝑅𝑅1∗ = (𝐿𝐿 𝑅𝑅1 )∗
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Regular Expressions – Example
𝐿𝐿(((𝑎𝑎∗) ∘ (𝑏𝑏∗))) =

a)  {𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 ∣ 𝑛𝑛 ≥ 0}
b)  {𝑎𝑎𝑚𝑚𝑏𝑏𝑛𝑛 ∣ 𝑚𝑚,𝑛𝑛 ≥ 0}
c)  { 𝑎𝑎𝑎𝑎 𝑛𝑛 ∣ 𝑛𝑛 ≥ 0}
d)  {𝑎𝑎, 𝑏𝑏}∗
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Simplifying Notation
• Omit ∘ symbol: 𝑎𝑎𝑎𝑎 = 𝑎𝑎 ∘ 𝑏𝑏

• Omit many parentheses, since union and concatenation 
are associative:

𝑎𝑎 ∪ 𝑏𝑏 ∪ 𝑐𝑐 = 𝑎𝑎 ∪ (𝑏𝑏 ∪ 𝑐𝑐) = (𝑎𝑎 ∪ 𝑏𝑏) ∪ 𝑐𝑐

• Order of operations: Evaluate star, then concatenation, 
then union

𝑎𝑎𝑎𝑎∗ ∪ 𝑐𝑐 = (𝑎𝑎 𝑏𝑏∗ ) ∪ 𝑐𝑐
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Examples
Let Σ = {0, 1}

1. 𝑤𝑤 𝑤𝑤 contains exactly one 1}

2. 𝑤𝑤 𝑤𝑤 has length at least 3 and its third symbol is 0}

3. 𝑤𝑤 every odd position of 𝑤𝑤 is 1}
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Syntactic Sugar
• For alphabet Σ, the regex Σ represents 𝐿𝐿 Σ = Σ

• For regex 𝑅𝑅, the regex 𝑅𝑅+ = 𝑅𝑅𝑅𝑅∗
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Regexes in the Real World
grep = globally search for a regular expression and print 
matching lines
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Equivalence of Regular 
Expressions, NFAs, and DFAs
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Regular Expressions Describe Regular Languages

Theorem: A language 𝐴𝐴 is regular if and only if it is 
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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Regular expression -> NFA
Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

Base cases: 
𝑅𝑅 = ∅

𝑅𝑅 = 𝜀𝜀

𝑅𝑅 = 𝑎𝑎
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Regular expression -> NFA
Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

What should the inductive hypothesis be?
a) Suppose some regular expression of length 𝑘𝑘 can be 

converted to an NFA
b) Suppose every regular expression of length 𝑘𝑘 can be 

converted to an NFA
c) Suppose every regular expression of length at most 𝑘𝑘

can be converted to an NFA
d) None of the above
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Regular expression -> NFA
Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

Inductive step: 
𝑅𝑅 = (𝑅𝑅1∪ 𝑅𝑅2)

𝑅𝑅 = (𝑅𝑅1𝑅𝑅2)

𝑅𝑅 = 𝑅𝑅1∗
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Example Convert (1(0 ∪ 1))∗ to an NFA
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