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* Nondeterministic Finite Automata

* NFAs vs. DFAs
e Subset construction: NFA — DFA
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Closure Properties
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An Analogy

In algebra, we try to identify operations which are
common to many different mathematical structures

Example: The integersZ = {...— 2,—1,0,1,2, ... } are
closed under

 Addition:x + y

* Multiplication: x x vy

* Negation: —x

e ...but NOT Division: x / y

We'd like to investigate similar closure properties of the
class of regular languages



Regular operations on languages
Let A,B € X" be languages. Define

Union:A UB ={w |w € Aorw € B}
Concatenation: A e B = {xy |x € A,y € B}

Star: A* =
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Other operations
Let A,B € X" be languages. Define

Complement: A = {w |w & A}

Intersection:4A N B = {w|w € Aand w € B}

Reverse: AR = {w |w® € 4}
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Operations on languages
Let A, B € X" be languages. Define

Union:A UB = {x | x € Aorx € B}
Concatenation: A o B ={xy |x € A,y € B}
Star: A" = {wyw,..w, |[n = 0andw; € A}

Regular
Operations

Complement: A = {x | x ¢ A}
Intersection:A N B= {x|x € Aand x € B}
Reverse: A" ={aja,..a,|a,..a; € A}

Theorem: The class of regular languages is closed under all six
of these operations, i.e., if A and B are regular, applying any of
these operations yields a regular language
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Proving Closure Properties
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Complement

Complement: A = {w |w & A}
Theorem: If A is regular, then A is also regular

Proof idea:
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Complement, Formally

[] g
Let M = (Q,2,0,qo, F) be a DFA recognizing a language
A. Which of the following represents a DFA recognizing A?

a) (F,%,9,q0,0Q)

b) (0Q,%,06,q9,0 \ F), where Q \ F is the set of states in
() thatare notin F

c) (Q,%,6,q9 F)whered'(q,s) = psuch that
o(p,s) = q
d) None of the above



Closure under Concatenation

Concatenation: Ao B = {xy|x € A,y € B}

Theorem. If A and B are regular, then A o B is also regular.
Proof idea: Given DFAs M , and My, construct NFA by

* Connecting all accept states in M , to the start state in M.

* Make all states in M, non-accepting.




Closure under Concatenation

Concatenation: Ao B = {xy|x € A,y € B}

Theorem. If A and B are regular, then A o B is also regular.
Proof idea: Given DFAs M , and My, construct NFA by

* Connecting all accept states in M , to the start state in M.

* Make all states in M, non-accepting.




A Mystery Construction

Given DFAs M , recognizing A and M recognizing B, what does the

[=] o [m]

following NFA recognize?

a) AUB
b) AoB

c) ANB
d) {¢UAU B




Closure under Star

Star: A* ={aqa,..a,|n =0anda; € A}

Theorem. If A is regular, then A" is also regular.

©
- )i =4
©



Closure under Star

Star: A" = {a,a,...a,|n = 0anda; € A}

Theorem. If A is regular, then A" is also regular.
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On proving your own closure properties

You’ll have homework/test problems of the form “show that
the regular languages are closed under some operation”

What would Sipser do?

- Give the “proof idea”: Explain how to take machine(s)
recognizing regular language(s) and create a new machine

- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works



Regular Expressions
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Regular Expressions

A different way of describing regular languages

* A regular expression expresses a (possibly complex)
language by combining simple languages using the
regular operations

“Simple” languages: @, {¢}, {a} for some a € X
Regular operations:

Union: A UB
Concatenation: A o B ={ab |a € A,b € B}

Star: A" = {a;a,...a,|n = 0anda; € A}



Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

1. &, ®,and a are regular expressions for every a € X

2. If R{ and R, are regular expressions, then so are
(R1UR3), (R1° Ry), and (R;)

Examples: (over £ = {a, b, c})

(@aeb)  ((((ao(®))ec)u(((a)eb))?)) (@)
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Regular Expressions — Semantics

L(R) = the language a regular expression describes

L(D) =0

L(e) = {&}

L(a) = {a}foreverya € X
L((R{URy)) =L(R;) U L(R3)
L((Ri° Ry)) = L(Rq) ° L(R>)
L((RD) = (L(R))"

o 1A W
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Regular Expressions — Example
L(((a”) < (b)) =

a) {a"b" | n =0}

b) {a™b" | m,n = 0}
c) {(ab)" I n =0}

d) {a, b}’



Simplifying Notation
* Omit o symbol: (ab) = (a o b)

* Omit many parentheses, since union and concatenation
are associative:

(aubuc)=(au(buc))=((auUb)Uc)

* Order of operations: Evaluate star, then concatenation,
then union

ab*Uc = (a(b*))Uc
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Examples
Let £ = {0, 1}

1. {w |w contains exactly one 1}

2. {w |w haslength at least 3 and its third symbol is 0}

3. {w |every odd position of wis 1}



Syntactic Sugar

 For alphabet X, the regex X represents L(X) = X

* Forregex R, theregex R* = RR"
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Regexes in the Real Worlo

grep = globally search for a regular expression and print
matching lines

$ grep "Axy*z' myfile

de
z

$ grep 'Ax.*z' myfile

de

$ grep 'Ax\*z' myfile

$ grep "\\' myfile
x\z
s i
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Equivalence of Regular
Expressions, NFAs, and DFASs
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Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases:
R =0
R =¢
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

What should the inductive hypothesis be?

a) Suppose some regular expression of length k can be
converted to an NFA

b) Suppose every regular expression of length k can be
converted to an NFA

c) Suppose every regular expression of length at most &
can be converted to an NFA

d) None of the above



Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:
R —_ (R1U Rz)

R = (R1R3)
R = (Ry)
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Example Convert (1(0 U 1))* to an NFA
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