BU CS 332 – Theory of Computation

https://forms.gle/5sTNDCU1QtEemHHM7

Lecture 6:

- Regexes = NFAs
- Limitations of Finite Automata

Reading: Sipser Ch 1.3 "Myhill-Nerode" note

Mark Bun February 7, 2024

Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

- 1. ε , \emptyset , and a are regular expressions for every $a \in \Sigma$
- 2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2), (R_1 \circ R_2), \text{ and } (R_1^*)$

Examples: (over $\Sigma = \{a, b, c\}$) (with simplified notation) ab $ab^*c \cup (a^*b)^*$ Ø

Regular Expressions – Semantics

L(R) = the language a regular expression describes

1.
$$L(\emptyset) = \emptyset$$

2. $L(\varepsilon) = \{\varepsilon\}$
3. $L(a) = \{a\}$ for every $a \in \Sigma$
4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
6. $L((R_1^*)) = (L(R_1))^*$

Example: $L(a^*b^*) = \{a^m b^n \mid m, n \ge 0\}$

Syntactic Sugar ov

• For alphabet Σ , the regex Σ represents $L(\Sigma) = \Sigma$

• For regex R, the regex $R^+ = RR^*$ some as R^* , but us including C $L(R^+) =$ strings obtained by concatentiating one on more strings from L(R)

Regexes in the Real World

grep = globally search for a regular expression and print matching lines

\$ grep	'^xy*z' myfile
xyz	
xyzde	
XZZ	
xz	
xyyz	
xyyyz	
xyyyyz	
\$ grep	'^x.*z' myfile
xyz	
xyzde	
xxz	
XZZ	
x\z	
X*Z	
xz	
x z	
xYz	
xyyz	
xyyyz	
хууууг	
	'^x*z' myfile
X*Z	
	'\\' myfile
x\z	
\$	

Regular Expressions Describe Regular Languages

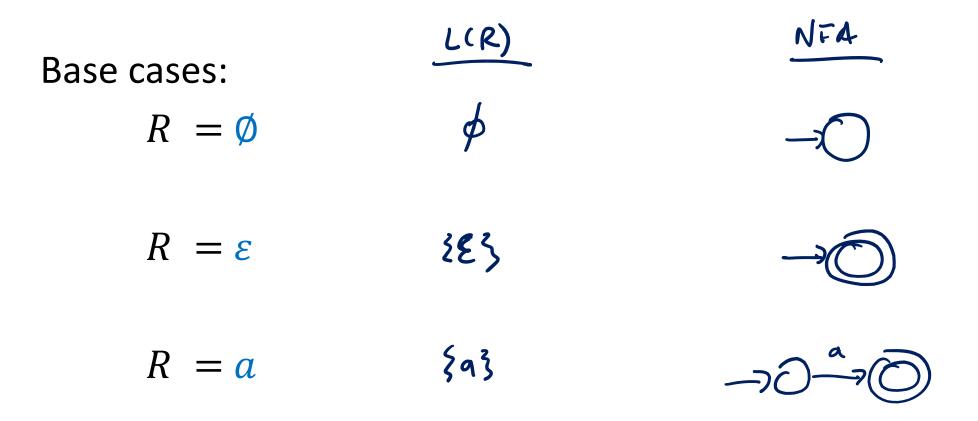
Theorem: A language A is regular if and only if it is described by a regular expression A recognized by NFAs

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex



Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex Int => esp regex of size k+1 "# of symbols in regex, ..e. # of has an equ.V. NFA. $\phi, \epsilon, a, (,), U, o, K$

What should the inductive hypothesis be?

- a) Suppose **some** regular expression of length k can be converted to an NFA
- b) Suppose every regular expression of length k can be converted to an NFA

- Suppose every regular expression of length at most k can be converted to an NFA
- d) None of the above

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex Assue ery regex of size 5 h can be small to an NFAlet R be an arbitrary regex of size 1211. Inductive step:

$$R = (R_1 \cup R_2)$$

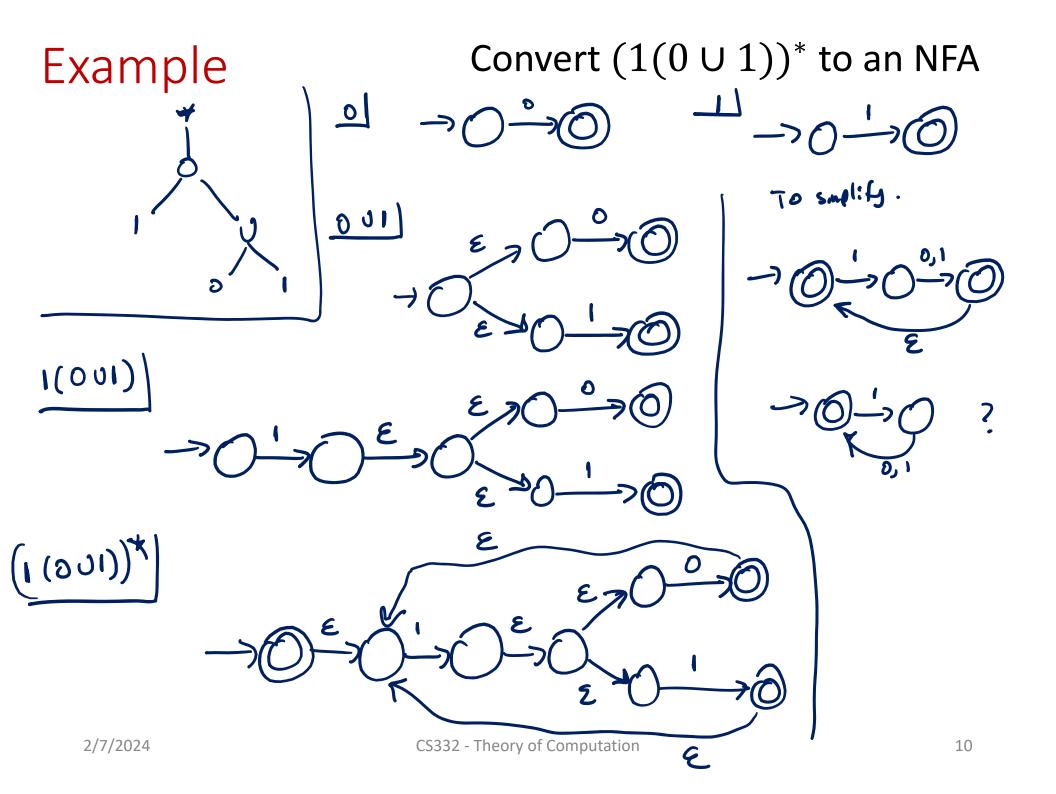
 $R = (R_1 R_2)$

 $R = (R_1^*)$

$$e N_1$$

$$N_1 O \varepsilon^{\varepsilon} O N_2 O$$

1



Regular Expressions Describe Regular Languages

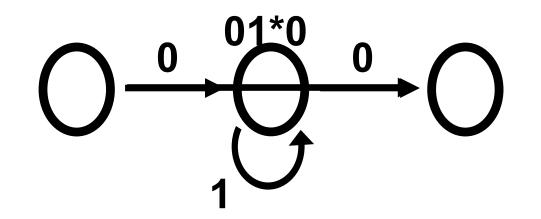
Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

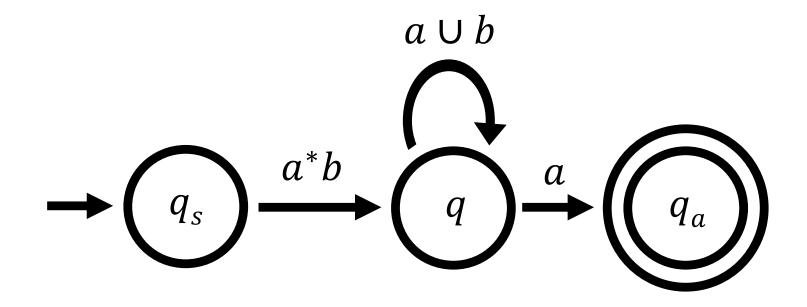
Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by "ripping out" states one at a time and replacing with regexes

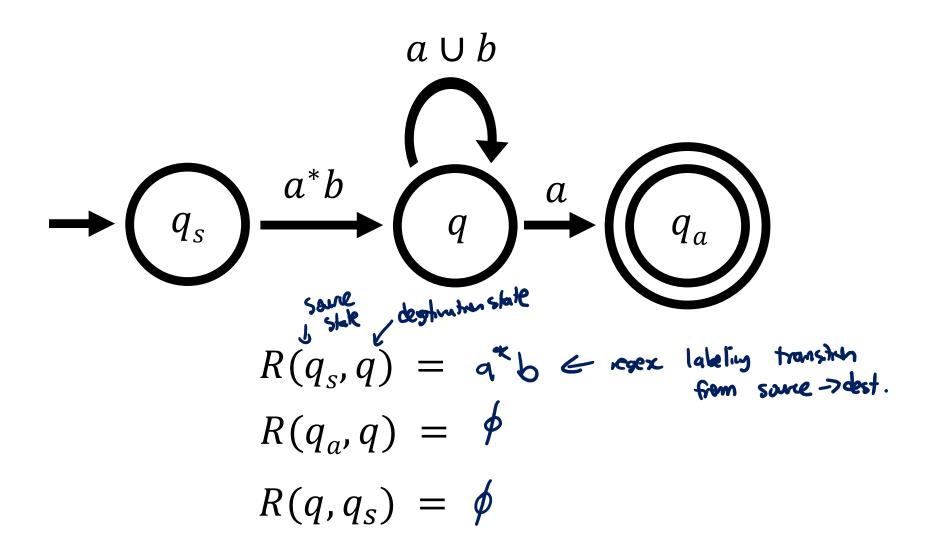


Generalized NFAs (GNFAs)

- Every transition is labeled by a regex
- One start state with only outgoing transitions
- Only one accept state with only incoming transitions
- Start state and accept state are distinct

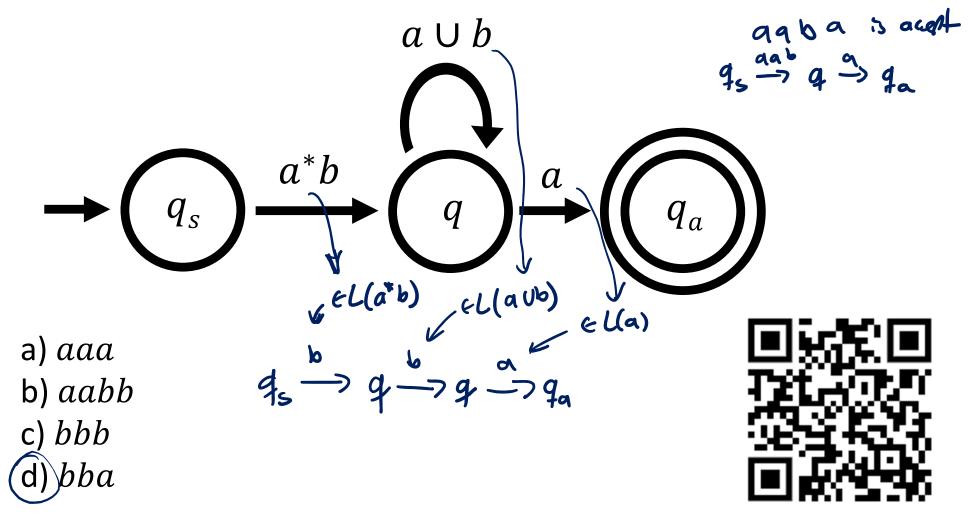


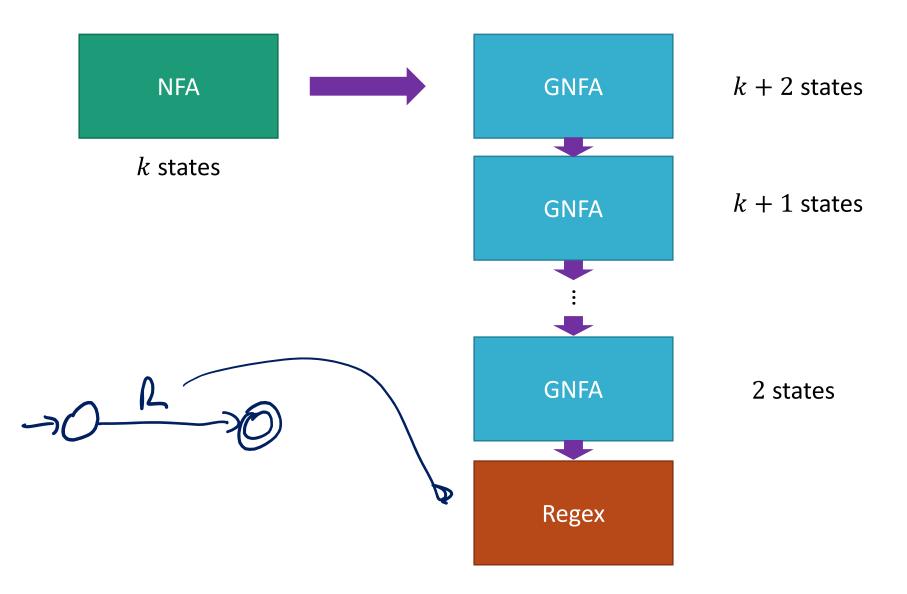
Generalized NFA Example



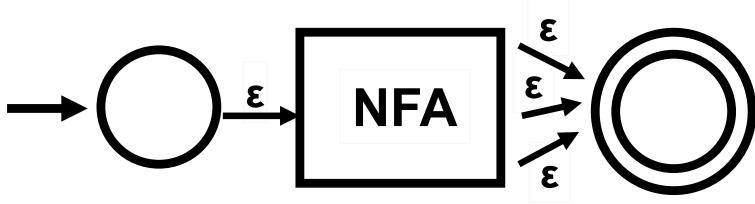
Which of these strings is accepted?

Which of the following strings is accepted by this GNFA?









- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.

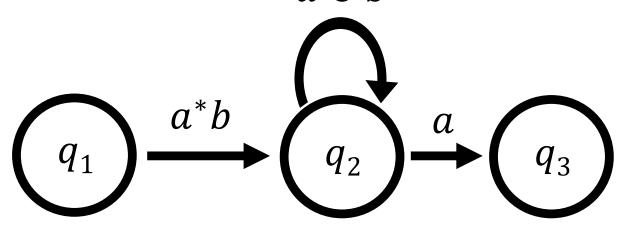
Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

$$(q_1) \xrightarrow{a^*b} (q_2) \xrightarrow{a} (q_3)$$

$$(q_1)$$
 a ba (q_3)

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the $a \cup b$

a) a*b(a ∪ b)a
b) a*b(a ∪ b)*a
c) a*b ∪ (a ∪ b) ∪ a
d) None of the above



atb(aub) a q_3

arb(aub) a Ub

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the $a \cup b$

 a^*b

 q_2

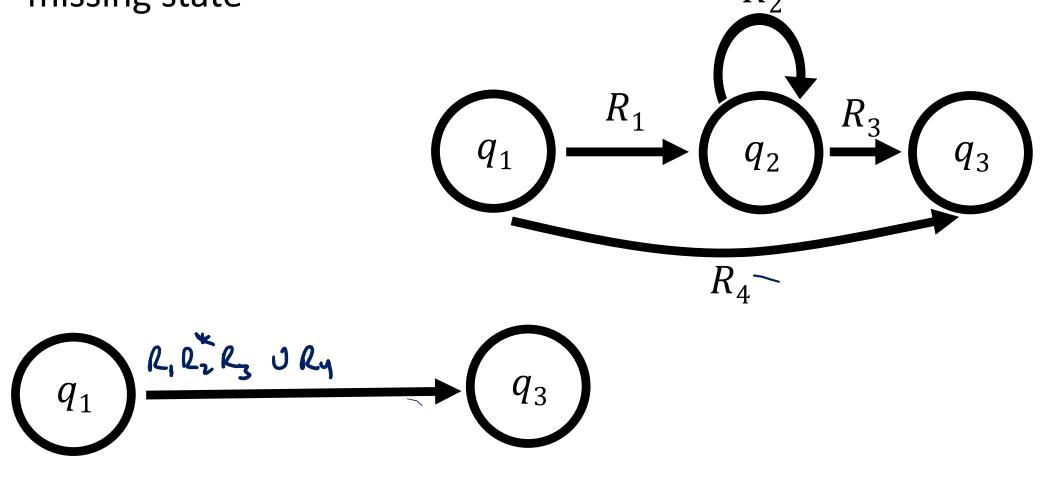
h

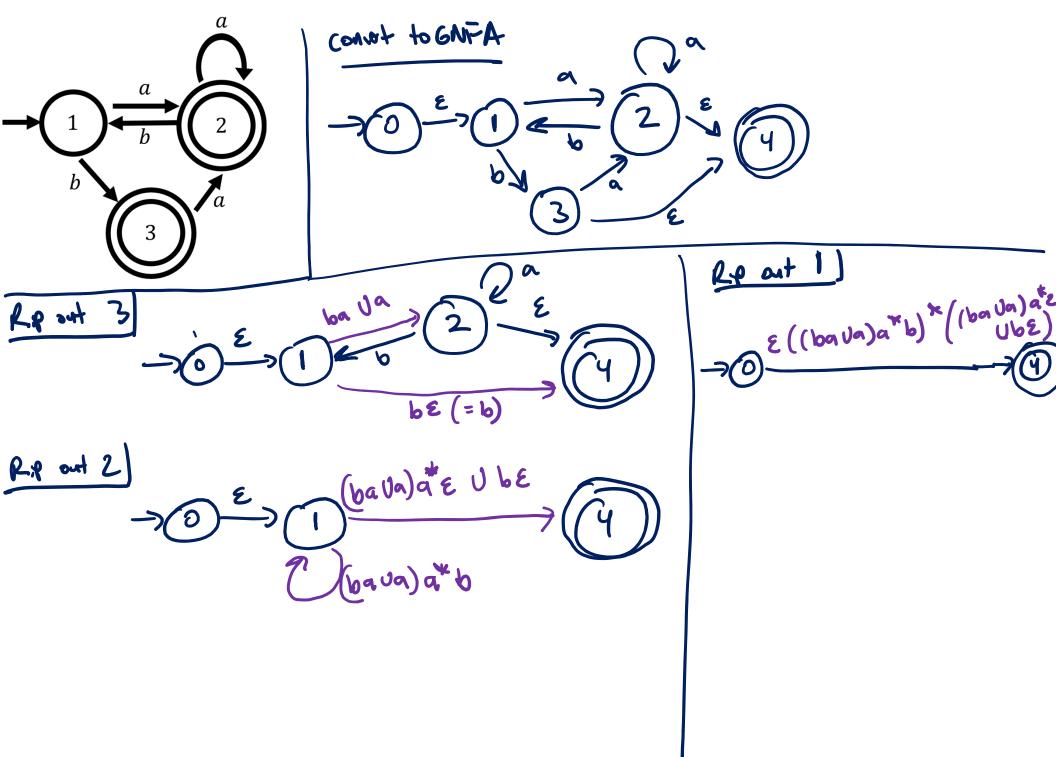
 q_1

 q_3

 q_3

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state R_2





Limitations of Finite Automata

Motivating Questions

- We've seen techniques for showing that languages are regular - Constant a DFA -roustment a reger - Use closure properties
 - Construct an NFA

- How can we tell if we've found the smallest DFA recognizing a language?
- Are all languages regular? How can we prove that a language is not regular?

An Example $A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}$

Claim: Every DFA recognizing A needs at least 3 states

1

0

 q_2

0

Proof: Let M be any DFA recognizing A. Consider running M on each of $x = \varepsilon, y = 0, w = 01$ Let $q_x = \text{stale } M$ reactes when ready x Goal. Free that q_x, q_y, q_z $q_y = \frac{w}{w}$ are all distuct.

