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Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

1. &, @, and a are regular expressions for every a € X

2. If R{ and R, are regular expressions, then so are
(R1UR3), (R1° Ry), and (Ry)

Examples: (over £ = {a, b,c}) (with simplified notation)
ab ab*c U (a*b)* 0
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Regular Expressions — Semantics

L(R) = thelanguage a regular expression describes

L(®) =0

L(e) = {¢}

L(a) = {a}foreverya € X
L((R1U Ry)) = L(Ry) U L(R>)
L((Ri° R3)) = L(R1) o L(R>)
L((R1)) = (L(RY)*

O U1 WD

Example: L(a*b*) = {a™b" | m,n = 0}
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Syntactic Sugar v\

* For alphabet X, the regex X represents L(Z) = X

* For regex R, theregex R = RR"
St as R%, hat wl mcludy €

L(P{")'-" Steys  dhtased by (oncatenat My ove o~
ot shigs Fawm  L(R)
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Regexes in the Real World

grep = globally search for a regular expression and print
matching lines

$ grep 'Axy*z' myfile

de
yd

$ grep 'Ax.*z' myfile

de

$ grep 'Ax\*z' myfile

$ grep '\\' myfile
vh
s i
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Regular Expressions Describe Regular Languages

Theorem: A language A is regular,{and only if itis

described by a regular expression "\ e.opwd by OFAs
(2 wioogamd by NFAs

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases:
R =0
R =¢
R =a
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[

° lH
Regular expression -> NFA it
r -.ql |

[=]

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex _
T =) &2 gex of sze kil N4 of gymbols W regex e H of
Was an cga.\/- NFA . ,C’a) () )J L)J o, ®

What should the inductive hypothesis be?

a) Suppose some regular expression of length k can be
converted to an NFA

b) Suppose every regular expression of length k can be
converted to an NFA

[c)] Suppose every regular expression of length at most k

S

can be converted to an NFA

d) None of the above (ﬁ UQ
T T



Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Aoswe @99 et of S LU coabe omckd to dn NFA-

Lo (L Vo b or¥dy regex o 53¢ Leti . .
Inductive step: ~o- - - - let N, reeeyrie UL)

— ! \ M
R (R1U R) (’-)O\A ( =D M re.oynies
. € | Mo | U= LA

R = (RyR,) s s
— 1o /——o-a _
1 op e g
R — R* c
(R) WT'S
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Example Convert (1(0 U 1))" to an NFA
1 | = >O—© _u——vc)._'—y@
/ \ <o smiliy .

| 291} ALl
D/KIJ —9@/0 )@ -’)@;,O.o’_‘?@
£330 5P S~
1(001)\ 2%0_0_9@ S 7
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Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

00



Generalized NFAs  (enFAs)

* Every transition is labeled by a regex

* One start state with only outgoing transitions

* Only one accept state with only incoming transitions
 Start state and accept state are distinct

an

-0=0-0



Generalized NFA Example

an

b sl-\t oghwutrir SHE
< lalely tHoask
R(qs’ q) b & o W‘ﬂ smt7&s+.

R(q,q) = 75
R(q,q5) = 75



Which of these strings is accepted?

Which of the following strings is accepted by this GNFA?
a Ub A el
ﬁs 7 q’ —9 ﬁ-a




NFA -> Regular expression

‘

k + 2 states

k states
k + 1 states
/\ “ 2 states

Regex
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NFA -> GNFA

&
Ol
%

 Add a new start state with no incoming arrows.
 Make a unique accept state with no outgoing arrows.



GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state
‘ Q



GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state aVUb

@ a*b(aUb)a b
a*b(aUb)*a |
c) a'hu(aUb)Ua

d) None of the above

—




GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state aVUb

a*b a
()= ()=>(=)

b
S
arb(auno)m Ub
—




GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state R,
R, ‘ l R,
ﬁ #

R,~
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Limitations of Finite
Automata
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Motivating Questions

* We've seen techniques for showing that languages are
regular _ o ia4 o oA -costual o regec

- Gougpuc an NFA - U clove pyrties

e How can we tell if we've found the smallest DFA
recognizing a language?

* Are all languages regular? How can we prove that a
language is not regular?
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An Example *(D) —(a
A={we€{0,1}" | wends with 01 } 1

Claim: Every DFA recognizing A needs at least 3 states

Proof: Let M be any DFA recognizing A. Consider running
M oneachofx =¢,y=0,w =01

Let G * Sab M cades Wh eady T _‘é’—‘-"— Prs toat= q") %, %-
4y = Y at all  daohed.
da> w

\aw”. B aucgt SialC.
Gof. HFh oGP dy e e gy o md s

Qla/M_ 417Lq'_j M oon wiet xl =1 wmst g5ect
Qroof - sqgeae  Prsoc q.,,fq:, -
o Moo ot vl?—m wat  ace-

4 \
QOM@ % lpast ¢ ot \e \oh
\.L_/; an  duett & g5t swie
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