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Regular Expressions – Syntax
A regular expression 𝑅𝑅 is defined recursively using the 
following rules:

1. 𝜀𝜀, ∅, and 𝑎𝑎 are regular expressions for every 𝑎𝑎 ∈ Σ

2. If 𝑅𝑅1 and 𝑅𝑅2 are regular expressions, then so are
(𝑅𝑅1∪ 𝑅𝑅2), (𝑅𝑅1∘ 𝑅𝑅2), and (𝑅𝑅1∗)

Examples: (over Σ = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐})      (with simplified notation)
𝑎𝑎𝑎𝑎 𝑎𝑎𝑏𝑏∗𝑐𝑐 ∪ 𝑎𝑎∗𝑏𝑏 ∗ ∅
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Regular Expressions – Semantics 
𝐿𝐿(𝑅𝑅) = the language a regular expression describes

1. 𝐿𝐿(∅) = ∅
2. 𝐿𝐿 𝜀𝜀 = 𝜀𝜀
3. 𝐿𝐿(𝑎𝑎) = {𝑎𝑎} for every 𝑎𝑎 ∈ Σ
4. 𝐿𝐿((𝑅𝑅1∪ 𝑅𝑅2)) = 𝐿𝐿(𝑅𝑅1) ∪ 𝐿𝐿(𝑅𝑅2)
5. 𝐿𝐿((𝑅𝑅1∘ 𝑅𝑅2)) = 𝐿𝐿(𝑅𝑅1) ∘ 𝐿𝐿(𝑅𝑅2)
6. 𝐿𝐿 𝑅𝑅1∗ = (𝐿𝐿 𝑅𝑅1 )∗

Example: 𝐿𝐿 𝑎𝑎∗𝑏𝑏∗ = {𝑎𝑎𝑚𝑚𝑏𝑏𝑛𝑛 ∣ 𝑚𝑚,𝑛𝑛 ≥ 0}
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Syntactic Sugar
• For alphabet Σ, the regex Σ represents 𝐿𝐿 Σ = Σ

• For regex 𝑅𝑅, the regex 𝑅𝑅+ = 𝑅𝑅𝑅𝑅∗

2/7/2024 CS332 - Theory of Computation 4



Regexes in the Real World
grep = globally search for a regular expression and print 
matching lines
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Regular Expressions Describe Regular Languages

Theorem: A language 𝐴𝐴 is regular if and only if it is 
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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Regular expression -> NFA
Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

Base cases: 
𝑅𝑅 = ∅

𝑅𝑅 = 𝜀𝜀

𝑅𝑅 = 𝑎𝑎
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Regular expression -> NFA
Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

What should the inductive hypothesis be?
a) Suppose some regular expression of length 𝑘𝑘 can be 

converted to an NFA
b) Suppose every regular expression of length 𝑘𝑘 can be 

converted to an NFA
c) Suppose every regular expression of length at most 𝑘𝑘

can be converted to an NFA
d) None of the above
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Regular expression -> NFA
Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

Inductive step: 
𝑅𝑅 = (𝑅𝑅1∪ 𝑅𝑅2)

𝑅𝑅 = (𝑅𝑅1𝑅𝑅2)

𝑅𝑅 = 𝑅𝑅1∗
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Example Convert (1(0 ∪ 1))∗ to an NFA
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Regular Expressions Describe Regular Languages

Theorem: A language 𝐴𝐴 is regular if and only if it is 
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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NFA -> Regular expression
Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a 
time and replacing with regexes
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Generalized NFAs
• Every transition is labeled by a regex
• One start state with only outgoing transitions
• Only one accept state with only incoming transitions
• Start state and accept state are distinct
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𝑞𝑞
𝑎𝑎∗𝑏𝑏

𝑞𝑞𝑠𝑠 𝑞𝑞𝑎𝑎

𝑎𝑎 ∪ 𝑏𝑏

𝑎𝑎



Generalized NFA Example

2/7/2024 CS332 - Theory of Computation 14

𝑅𝑅(𝑞𝑞𝑠𝑠, 𝑞𝑞)  = 
𝑅𝑅(𝑞𝑞𝑎𝑎, 𝑞𝑞)  = 

𝑅𝑅(𝑞𝑞, 𝑞𝑞𝑠𝑠)  = 

𝑞𝑞
𝑎𝑎∗𝑏𝑏

𝑞𝑞𝑠𝑠 𝑞𝑞𝑎𝑎

𝑎𝑎 ∪ 𝑏𝑏

𝑎𝑎



Which of these strings is accepted?
Which of the following strings is accepted by this GNFA?
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a) 𝑎𝑎𝑎𝑎𝑎𝑎
b) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
c) 𝑏𝑏𝑏𝑏𝑏𝑏
d) 𝑏𝑏𝑏𝑏𝑏𝑏

𝑞𝑞
𝑎𝑎∗𝑏𝑏

𝑞𝑞𝑠𝑠 𝑞𝑞𝑎𝑎

𝑎𝑎 ∪ 𝑏𝑏

𝑎𝑎



NFA -> Regular expression
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NFA GNFA

GNFA

GNFA

Regex

𝑘𝑘 states

𝑘𝑘 + 2 states

𝑘𝑘 + 1 states

2 states

…



NFA -> GNFA
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NFAε
ε

ε

ε

• Add a new start state with no incoming arrows.
• Make a unique accept state with no outgoing arrows.



GNFA -> Regular expression
Idea: While the machine has more than 2 states, rip one 
out and relabel the arrows with regexes to account for the 
missing state
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𝑎𝑎∗𝑏𝑏
𝑞𝑞1 𝑞𝑞3

𝑎𝑎
𝑞𝑞2

𝑞𝑞1 𝑞𝑞3



GNFA -> Regular expression
Idea: While the machine has more than 2 states, rip one 
out and relabel the arrows with regexes to account for the 
missing state
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𝑞𝑞1 𝑞𝑞3

a)  𝑎𝑎∗𝑏𝑏 𝑎𝑎 ∪ 𝑏𝑏 𝑎𝑎
b)  𝑎𝑎∗𝑏𝑏 𝑎𝑎 ∪ 𝑏𝑏 ∗𝑎𝑎
c)  𝑎𝑎∗𝑏𝑏 ∪ 𝑎𝑎 ∪ 𝑏𝑏 ∪ 𝑎𝑎
d) None of the above

𝑎𝑎∗𝑏𝑏
𝑞𝑞1 𝑞𝑞3

𝑎𝑎
𝑞𝑞2

𝑎𝑎 ∪ 𝑏𝑏



GNFA -> Regular expression
Idea: While the machine has more than 2 states, rip one 
out and relabel the arrows with regexes to account for the 
missing state
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𝑎𝑎∗𝑏𝑏
𝑞𝑞1 𝑞𝑞3

𝑎𝑎
𝑞𝑞2

𝑎𝑎 ∪ 𝑏𝑏

𝑏𝑏

𝑞𝑞1 𝑞𝑞3



GNFA -> Regular expression
Idea: While the machine has more than 2 states, rip one 
out and relabel the arrows with regexes to account for the 
missing state
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𝑞𝑞1 𝑞𝑞3𝑞𝑞2

𝑅𝑅1

𝑅𝑅2

𝑅𝑅3

𝑅𝑅4

𝑞𝑞1 𝑞𝑞3
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Limitations of Finite 
Automata
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Motivating Questions
• We’ve seen techniques for showing that languages are 

regular

• How can we tell if we’ve found the smallest DFA 
recognizing a language?

• Are all languages regular? How can we prove that a 
language is not regular?
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An Example
𝐴𝐴 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 ends with 01

Claim: Every DFA recognizing 𝐴𝐴 needs at least 3 states
Proof: Let 𝑀𝑀 be any DFA recognizing 𝐴𝐴. Consider running 
𝑀𝑀 on each of 𝑥𝑥 = 𝜀𝜀,𝑦𝑦 = 0,𝑤𝑤 = 01
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A General Technique
Definition: Strings 𝑥𝑥 and 𝑦𝑦 are distinguishable by 𝐿𝐿 if there 
exists a “distinguishing extension” 𝑧𝑧 ∈ Σ∗ such that exactly 
one of 𝑥𝑥𝑥𝑥 or 𝑦𝑦𝑦𝑦 is in 𝐿𝐿.
Ex. 𝑥𝑥 = 𝜀𝜀, 𝑦𝑦 = 0

Definition: A set of strings 𝑆𝑆 is pairwise distinguishable by 
𝐿𝐿 if every pair of distinct strings 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆 is distinguishable 
by 𝐿𝐿.
Ex. 𝑆𝑆 = {𝜀𝜀, 0, 01}
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𝐴𝐴 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 ends with 01



A General Technique
Theorem: If 𝑆𝑆 is pairwise distinguishable by 𝐿𝐿, then every 
DFA recognizing 𝐿𝐿 needs at least |𝑆𝑆| states
Proof: Let 𝑀𝑀 be a DFA with < 𝑆𝑆 states. By the 
pigeonhole principle, there are 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆 such that 𝑀𝑀 ends 
up in same state on 𝑥𝑥 and 𝑦𝑦
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Back to Our Example
𝐴𝐴 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 ends with 01

Theorem: If 𝑆𝑆 is pairwise distinguishable by 𝐿𝐿, then every 
DFA recognizing 𝐿𝐿 needs at least |𝑆𝑆| states

𝑆𝑆 = {𝜀𝜀, 0, 01}
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Another Example
𝐵𝐵 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 = 2

Theorem: If 𝑆𝑆 is pairwise distinguishable by 𝐿𝐿, then every 
DFA recognizing 𝐿𝐿 needs at least |𝑆𝑆| states

𝑆𝑆 = { }
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Distinguishing Extension
Which of the following is a distinguishing extension for 𝑥𝑥 =
0 and 𝑦𝑦 = 00 for language 𝐵𝐵 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 = 2 ?

a) 𝑧𝑧 = 𝜀𝜀
b) 𝑧𝑧 = 0
c) 𝑧𝑧 = 1
d) 𝑧𝑧 = 00
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