BU CS 332 – Theory of Computation

https://forms.gle/5sTNDCU1QtEemHHM7

Lecture 6:

- Regexes = NFAs
- Limitations of Finite Automata

Reading: Sipser Ch 1.3 "Myhill-Nerode" note

Mark Bun February 7, 2024

Regular Expressions – Syntax

A regular expression *R* is defined recursively using the following rules:

1. ε , \emptyset , and a are regular expressions for every $a \in \Sigma$

2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2), (R_1 \circ R_2), \text{ and } (R_1^*)$

Examples: (over $\Sigma = \{a, b, c\}$) (with simplified notation) ab $ab^*c \cup (a^*b)^*$ Ø

Regular Expressions – Semantics

L(R) = the language a regular expression describes

1.
$$L(\emptyset) = \emptyset$$

2.
$$L(\varepsilon) = \{\varepsilon\}$$

3.
$$L(a) = \{a\}$$
 for every $a \in \Sigma$

- 4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- 5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- 6. $L((R_1^*)) = (L(R_1))^*$

Example: $L(a^*b^*) = \{a^m b^n \mid m, n \ge 0\}$

Syntactic Sugar

• For alphabet Σ , the regex Σ represents $L(\Sigma) = \Sigma$

• For regex R, the regex $R^+ = RR^*$

Regexes in the Real World

grep = globally search for a regular expression and print matching lines

\$ grep	'^xy*z'	myfile		
xyz				
xyzde				
XZZ				
xz				
xyyz				
xyyyz				
xyyyyz		/		
\$ grep	'^x.*z'	myfile		
xyz				
xyzde				
xxz				
XZZ				
X \ Z				
X Z				
× 7				
xY7				
XVV7				
xvvvz				
xvvvvz				
\$ grep	'^x*z'	myfile		
x*z				
\$ grep	'\\' my1	file		
x\z				
\$				

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Base cases:

 $R = \emptyset$

 $R = \varepsilon$

R = a

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

What should the inductive hypothesis be?

- a) Suppose **some** regular expression of length k can be converted to an NFA
- b) Suppose **every** regular expression of length k can be converted to an NFA
- c) Suppose **every** regular expression of length **at most** *k* can be converted to an NFA
- d) None of the above

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Inductive step:

$$R = (R_1 \cup R_2)$$

$$R = (R_1 R_2)$$

$$R = (R_1^*)$$

Example

Convert $(1(0 \cup 1))^*$ to an NFA

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by "ripping out" states one at a time and replacing with regexes

Generalized NFAs

- Every transition is labeled by a regex
- One start state with only outgoing transitions
- Only one accept state with only incoming transitions
- Start state and accept state are distinct

Generalized NFA Example

Which of these strings is accepted?

Which of the following strings is accepted by this GNFA?

a) *aaa* b) *aabb* c) *bbb* d) *bba*

- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

$$(q_1) \xrightarrow{a^*b} (q_2) \xrightarrow{a} (q_3)$$

$$(q_1) \longrightarrow (q_3)$$

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the $a \cup b$

 q_1

 a^*b

 q_2

a) a*b(a ∪ b)a
b) a*b(a ∪ b)*a
c) a*b ∪ (a ∪ b) ∪ a

d) None of the above

 q_1

 q_3

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the $a \cup b$

 a^*b

 q_1

 q_3

a

 q_2

b

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state R_2

Limitations of Finite Automata

Motivating Questions

• We've seen techniques for showing that languages are regular

- How can we tell if we've found the smallest DFA recognizing a language?
- Are all languages regular? How can we prove that a language is not regular?

An Example $A = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$

Claim: Every DFA recognizing A needs at least 3 states

Proof: Let *M* be any DFA recognizing *A*. Consider running *M* on each of $x = \varepsilon$, y = 0, w = 01

A General Technique $A = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$

Definition: Strings x and y are **distinguishable** by L if there exists a "distinguishing extension" $z \in \Sigma^*$ such that exactly one of xz or yz is in L.

Ex. $x = \varepsilon$, y = 0

Definition: A set of strings S is **pairwise distinguishable** by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

Ex. $S = \{\varepsilon, 0, 01\}$

A General Technique

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

Proof: Let *M* be a DFA with < |S| states. By the pigeonhole principle, there are $x, y \in S$ such that *M* ends up in same state on *x* and *y*

Back to Our Example

 $A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}$

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

 $S = \{\varepsilon, 0, 01\}$

Another Example

 $B = \{ w \in \{0, 1\}^* \mid |w| = 2 \}$

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

 $S = \{$

Distinguishing Extension

Which of the following is a distinguishing extension for x = 0 and y = 00 for language $B = \{w \in \{0, 1\}^* \mid |w| = 2\}$?

- a) $z = \varepsilon$
- b) z = 0
- c) z = 1
- d) z = 00

