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Last Time

* Regular expressions characterize the regular languages
e Every NFA can be converted to a regex generating its language
* Every regex can be converted to an NFA recognizing its language

* Limits of Finite Automata
 How can we tell if we’ve found the smallest DFA recognizing a
language?
* Are all languages regular? How can we prove that a language is
not regular?



An Example *(D) —(a
A={we€{0,1}" | wends with 01 } 1

Claim: Every DFA recognizing 4 needs at least 3 states

Proof: Let M be any DFA recognizing A. Consider running
Moneachofx=¢,y=0,w =01
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A General Technique A= {w €{0,1}" | w ends with 01}

Definition: Strings x and y are distinguishable by L if there
exists a “distinguishing extension” z € X" such that exactly one
of xz or yzisin L.

Ex.x=¢ y=0 Z= |

rr=£l =1 ¢k
\3%:0\ ek

Definition: A set of strings S is pairwise distinguishable by L if
every pair of distinct strings x,y € S is distinguishable by L.

Ex. S ={£,0,01} ¥*& y=o 2zl (z1¢A) OI€h)
x=& Y=ol z-¢ (¢2 A, 0lz EA

=0 Y=Ol z=¢t (0¢h, oreh
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A General Technique

Theorem: If S is pairwise distinguishable by L, then every DFA
recognizing L needs at least |S| states

Proof: Let M be a DFA with < |S| states.

Claim: There are distinct strings x, y € S such that M ends up in
same stateonx andy  uhy? Pigesrbele o le
ok of daw’.  fipme Shingg m S Udes OFA siaks _
Digemn ¢ 0 assiged 4o wie (ste)) 9 S M olads w
4,'\—4\2- ' o wh ven  8a XC

- A ready each ofF %, Y
\ ob WM lads W ¢ W
: u‘?\f&%g \:Q— qt;; “"“Jw'sl':‘j exdonsan b 1,y - e"“db o o A2, YF el
x 3 chale 9,‘ ¢h mws?wﬂ.‘ulm
) 2 ’Qam-j edach 0‘/ X2, :,‘Z'
&5

leqadless oF Jer @' 7 an aagha-
w. T garcle’s \
3

rRyeck clak, M st w5 @ W

—)

2/12/2024 CS332-Th fC Qt‘\}v 1'2 yj% -‘7 M .td:s ‘!f
- Theory of Computation 'tl-"‘,“ L°



Another Example

B={we{0,1}"

Eve:) OVA’ rcw;)\niknj Y
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|W| :2} cqmtwms ?L\ Slate g

Theorem: If S is pairwise distinguishable by L, then every

DFA recognizing L needs at least
S = {é) J, , 09, H0 O }
' . A
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Distinguishing Extension

Which of the following is a distinguishing extension for x =
0andy = 00 forlanguage B = {w € {0,1}" | lw| =2}7?

@ z=e re=9 )

@ Z = Y2200 €6 g2:= o00d5
C) Z = x2=0\ €% Y2 200, ¢ %

d) z=00 xz2=000¢6 yz:=00¢5
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Historical Note

Converse to the distinguishing set method:

If L has no distinguishing set of size > k, then L is
recognized by a DFA with k states

Myhill-Nerode Theorem (1958): L is recognized by a DFA
with < k states if and only if L does not have a
distinguishing set of size > k
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Non-Regularity

Theorem: If S is pairwise distinguishable by L, then every

DFA recognizing L needs at least |S| states
Cortbafoodve.  J OFA Lo L usmg < U shies <D Mo pavwse dab. seb of \

s W
Corollary: If S is an infinite set that is pairwise

distinguishable by L, then no DFA recognizes L
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The Classic Example

Theorem: A = {0"1" [n = 0} is not regular

Proof: We construct an infinite pairwise distinguishable set
1dea: Vel fo Whae diflaly £ 0, 00, 009, ...
— Geane nad o e Woo tas) 19 4 Lat for,

et 6= L(OY)= $€,9 00 00, .8
S b an bl feret dok e+ v A.
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Palindromes

Theorem: L = {w € {0,1}* [w = w®}is not regular
Proof: We construct an infinite pairwise distinguishable set
Moot 1 S=ion” let 2, y e abden

ot 2= x° .
Joat 2cx™ eL Vit 9z dL
x= 00 7l7¢"~= 9000

Met 10 5= L(6"1) 53 O | nz 0}
et = =0"1 | 4= o'l €5 e mfn
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v TIMETOWORK IN

f‘é
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Now you try!

SMALL GROUPSZ"
Use the distinguishing set method to show that the
following languages are not regular

Ly = {001 | i > > 0} = {000,001, 00, oot owout, 0w00, .3
Your job: Build an infinite set S such thatforall x =y € S,
there exists a z such that exactly one of xz and yzisin L

5= L(0Y) =} 6" |03

x=0" 9= 0 ol N7M (W06, g.in
x ¢ 9oE
| 'pfcssay)
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Weawe yom =) men-|
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v TIMETOWORK IN

Now you try! o
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SMALLGROUPS ="

Use the distinguishing set method to show that the
following languages are not regular

L2={1n2‘n20}
5= L, =" )n?oﬁ

n" mz
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Reusing a Proof o e
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Finding a distinguishing set can take some work...
Let’s try to reuse that work!

How might we show that

BALANCED ={w |w has an equal # of 0s and 1s}
is not regular?

?"‘Q‘L“L\ . L(OT1T) gl

|

01" |n > @ BALANCED n {w | all Os in w appear before all 1s}
_—

Clam.  SALKCED T wsh regdlr
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Using Closure Properties

If A is not regular, we can show a related language B is
not regular

0 - ) »

(not regular) U (regular)

any of {o, U, N} or, for one language, {—, ?, *}

By contradiction: If B is regular,then B N C (= A) is regular.

But A is not regular so neither is B!



