BU CS 332 – Theory of Computation

https://forms.gle/vs8YHr7UJNdMGzjv8

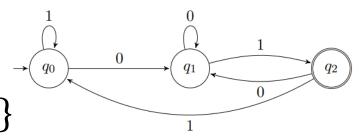
Lecture 7:

- Distinguishing sets
- Non-regular languages

Reading:

"Myhill-Nerode" note

Mark Bun February 12, 2024


Last Time

- Regular expressions characterize the regular languages
 - Every NFA can be converted to a regex generating its language
 - Every regex can be converted to an NFA recognizing its language

- Limits of Finite Automata
 - How can we tell if we've found the smallest DFA recognizing a language?
 - Are all languages regular? How can we prove that a language is not regular?

An Example

 $A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}$

Claim: Every DFA recognizing A needs at least 3 states

Proof: Let M be any DFA recognizing A. Consider running M on each of $x = \varepsilon$, y = 0, w = 01

A General Technique

 $A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}$

Definition: Strings x and y are **distinguishable** by L if there exists a "distinguishing extension" $z \in \Sigma^*$ such that exactly one of xz or yz is in L.

Ex.
$$x = \varepsilon$$
, $y = 0$

Definition: A set of strings S is pairwise distinguishable by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

Ex.
$$S = \{\varepsilon, 0, 01\}$$

A General Technique

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

Proof: Let M be a DFA with $\langle |S|$ states.

Claim: There are distinct strings $x, y \in S$ such that M ends up in same state on x and y

Another Example

```
B = \{ w \in \{0, 1\}^* \mid |w| = 2 \}
```

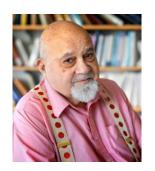
Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

```
S = \{
```

Distinguishing Extension

Which of the following is a distinguishing extension for x = 0 and y = 0 for language $B = \{ w \in \{0, 1\}^* \mid |w| = 2 \}$?

- a) $z = \varepsilon$
- b) z = 0
- c) z = 1
- d) z = 00


Historical Note

Converse to the distinguishing set method:

If L has **no** distinguishing set of size > k, then L is recognized by a DFA with k states

Myhill-Nerode Theorem (1958): L is recognized by a DFA with $\leq k$ states **if and only if** L does not have a distinguishing set of size > k

Non-Regularity

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

Corollary: If S is an **infinite** set that is pairwise distinguishable by L, then no DFA recognizes L

The Classic Example

Theorem: $A = \{0^n 1^n | n \ge 0\}$ is not regular

Proof: We construct an infinite pairwise distinguishable set

Palindromes

Theorem: $L = \{w \in \{0,1\}^* \mid w = w^R\}$ is not regular

Proof: We construct an infinite pairwise distinguishable set

Now you try!

Use the distinguishing set method to show that the following languages are not regular

$$L_1 = \{ 0^i 1^j \mid i > j \ge 0 \}$$

<u>Your job</u>: Build an infinite set S such that for all $x \neq y \in S$, there exists a z such that exactly one of xz and yz is in L

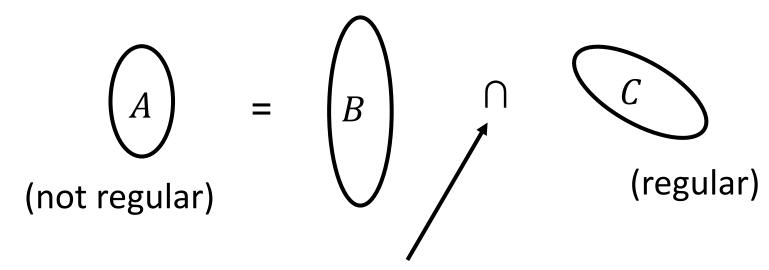
Now you try!

Use the distinguishing set method to show that the following languages are not regular

$$L_2 = \{ 1^{n^2} \mid n \ge 0 \}$$

Reusing a Proof

Reduce Republic


Finding a distinguishing set can take some work... Let's try to reuse that work!

How might we show that $BALANCED = \{w \mid w \text{ has an equal } \# \text{ of } 0\text{s and } 1\text{s} \}$ is not regular?

 $\{0^n1^n \mid n \geq 0\} = BALANCED \cap \{w \mid \text{all 0s in } w \text{ appear before all 1s}\}$

Using Closure Properties

If A is not regular, we can show a related language B is not regular

any of $\{\circ, \cup, \cap\}$ or, for one language, $\{\neg, R, *\}$

By contradiction: If B is regular, then $B \cap C (= A)$ is regular. But A is not regular so neither is B!

Example

Prove $B = \{0^i 1^j | i \neq j\}$ is not regular using

- Nonregular language $A = \{0^n 1^n | n \ge 0\}$ and
- Regular language

$$C = \{w \mid \text{all } 0\text{s in } w \text{ appear before all } 1\text{s}\}$$

Which of the following expresses A in terms of B and C?

a)
$$A = B \cap C$$

c)
$$A = B \cup C$$

b)
$$A = \overline{B} \cap C$$

d)
$$A = \bar{B} \cup C$$

Proof that B is nonregular

Assume for the sake of contradiction that B is regular We know: $A = \overline{B} \cap C$

!DANGER!

Let $B = \{0^i 1^j | i \neq j\}$ and write $B = A \cup C$ where

Nonregular language

$$A = \{0^i 1^j | i > j \ge 0\}$$
 and

Nonregular language

$$C = \{0^i 1^j | j > i \ge 0\}$$
 and

Does this let us conclude B is nonregular?