BU CS 332 – Theory of Computation

https://forms.gle/BzMCDFv5fFddcu936

Lecture 9:

• Turing Machines

Reading: Sipser Ch 3.1, 3.3

Mark BunFebruary 26, 2024

Turing Machines – Motivation

We've seen finite automata as a restricted model of computation

Finite Automata / Regular Expressions

- Can do simple pattern matching (e.g., substrings), check parity, addition
- Can't perform unbounded counting
- Can't recognize palindromes

Somewhat more powerful (not in this course):

Pushdown Automata / Context-Free Grammars

- Can count and compare, parse math expressions
- Can't recognize $\{a$ nb $^{n} \mathcal{C}$ $n\mid n\geq 0\}$

Turing Machines – Motivation

Goal:

Define a model of computation that is

- 1) General purpose. Captures all algorithms that can be implemented in any programming language.
- 2) Mathematically simple. We can hope to prove that things are not computable in this model.

A Brief History

Algo:thm

2/26/2024 CS332 - Theory of Computation 5

1900 – Hilbert's Tenth Problem

 $\frac{\rho_{\mathcal{I}}}{\rho(\tau, y, z)}$ = 3 x z - x 2 y 3 (x,y,z) $\in \mathbb{Z}^3$ s.t. $\rho(x,y,z) \in \mathbb{O}$? $(x, y, z) = (1, 3, 1)$ satisfies $p(x, y, z) = 0$

Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

David Hilbert 1862-1943

1928 – The *Entscheidungsproblem*

Wilhelm Ackermann 1896-1962

The "Decision Problem"

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it's logically valid?

A mallematical statest

Output: Is that statement the or false?

David Hilbert 1862-1943

1936 – Solution to the *Entscheidungsproblem*

"An unsolvable problem of elementary number theory"

Model of computation: λ -calculus (CS 320) m regular enpersions

Alonzo Church 1903-1995

Alan Turing 1912-1954

"On computable numbers, with an application to the *Entscheidungsproblem* "

Model of computation: Turing Machine

2 F.M.7e astissata

Turing Machines

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

Example

What does this TM do on input 000? a) Halt and accept b) Halt and reject c) Halt in state q_3 Loop forever without halting

Three Levels of Abstraction

High-Level Description An algorithm (like CS 330)

Pythen, Javan

Implementation-Level Description

Describe (in English) the instructions for a TM

- How to move the head
- What to write on the tape

Low-Level Description

State diagram or formal specification

Machine code,

C, assembly

Example

Determine if a string $w \in \{0\}^*$ is in the language Gien a string of all $0's$, is its length $A = \{0^{2^n} \mid n \ge 0\}$ ONXX ANXX High-Level Description

Repeat the following forever:

- If there is exactly one 0 in w , accept
- If there is an odd $($ > 1) number of 0s in w , reject

 0 go go go go go go α

• Delete half of the 0s in

Example

Determine if a string $w \in \{0\}^*$ is in the language \mathbf{D} $A = \{0^{2^n} \mid n \geq 0\}$ 10000 1000.

Implementation-Level Description
we be the head?

$$
Mae: 4e\text{ }be^{-1}
$$

- 1. While moving the tape head left-to-right:
	- a) Cross off every other 0 [ie. wplace every other $0 \leq x$]
	- b) If there is exactly one 0 when we reach the right end of the tape, $=$ first blank $=$ sjmbol accept
	- c) If there is an odd (> 1) number of 0s when we reach the right end of the tape, reject
- 2. Return the head to the left end of the tape
- 3. Go back to step 1

Differences between TMs and Finite Automata

Formal Definition of a TM

A TM is a 7-tuple $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm accept},q_{\rm reject}$

- \overline{O} is a finite set of states
- Σ is the input alphabet (does **not** include \Box)
- $\tau \subseteq \Gamma$ • Γ is the tape alphabet (contains \Box and Σ)
- δ is the transition function …more on this later
- •• $\tilde{q}_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state $(q_{\text{reject}} \neq q_{\text{accept}})$

TM Transition Function

L means "move left" and R means "move right" $a - b, b$ means:

• Replace a with b in current cell

- Transition from state p to state
- Move tape head right

means:

- Replace a with b in current cell
- Transition from state p to state
- Move tape head left UNLESS we are at left end of tape, in which case don't move

Configuration of a TM

A string that captures the **state** of a TM together with the **contents of the tape**

```
101950111
```


Configuration of a TM: Formally

A configuration is a string uqv where $q\in Q$ and $u,v\in \Gamma^*$

- Tape contents = uv (followed by infinitely many blanks \sqcup)
- Current state =
- Tape head on first symbol of

Example:
$$
\sqrt{\frac{4}{101}} \sqrt{\frac{2}{101}}
$$

How a TM Computes

Start configuration: $q_{\rm 0}$

In one step of computation: 2

- If $\delta(q, b) = (q', c, R)$, then ua q bv yields
- If $\delta(q, b) = (q', c, L)$, then ua q bv yields
- If we are at the left end of the tape in configuration q bv, what configuration do we reach if $\delta(q, b) = (q', c, L)$?

a)
$$
cq'v
$$

\n $\bigodot q'cv$
\nc) $q' \sqcup cv$
\nd) $q'cbv$

