BU CS 332 – Theory of Computation

<https://forms.gle/CrFE8LxSoNBdKe3d8>

Lecture 10:

- Turing Machines
- TM Variants and Closure Properties

Mark Bun February 28, 2024

Reading: Sipser Ch 3.1-3.3

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

Three Levels of Abstraction

High-Level Description An algorithm (like CS 330)

Implementation-Level Description

Describe (in English) the instructions for a TM

- How to move the head
- What to write on the tape

Low-Level Description

State diagram or formal specification

Example

Determine if a string $w \in \{0\}^*$ is in the language $A = \{0^{2^n} \mid n \ge 0\}$

High-Level Description

Repeat the following forever:

- If there is exactly one 0 in w , accept
- If there is an odd $($ > 1 $)$ number of 0s in w, reject
- Delete half of the 0s in w

Example

Determine if a string $w \in \{0\}^*$ is in the language $A = \{0^{2^n} \mid n \ge 0\}$

Implementation-Level Description

- 1. While moving the tape head left-to-right:
	- a) Cross off every other 0 (i.e., replace it with symbol x)
	- b) If there is exactly one 0 when we reach the right end of the tape, accept
	- c) If there is an odd (> 1) number of 0s when we reach the right end of the tape, reject
- 2. Return the head to the left end of the tape
- 3. Go back to step 1

Example Determine if a string $w \in A = \{0^{2^n}\}$ $n \geq 0$ Low-Level Description

Formal Definition of a TM

A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- \bullet Q is a finite set of states
- Σ is the input alphabet (does **not** include ⊔)
- Γ is the tape alphabet (contains \Box and Σ)
- δ is the transition function

…more on this later

- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{reject} \in Q$ is the reject state ($q_{reject} \neq q_{accept}$)

TM Transition Function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

L means "move left" and R means "move right"

 $\delta(p, a) = (q, b, R)$ means:

- Replace a with b in current cell
- Transition from state p to state q
- Move tape head right

 $\delta(p, a) = (q, b, L)$ means:

- Replace a with b in current cell
- Transition from state p to state q
- Move tape head left UNLESS we are at left end of tape, in which case don't move

Configuration of a TM: Formally

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by infinitely many blanks \Box)
- Current state = q
- Tape head on first symbol of ν

Example: $101q_50111$

How a TM Computes

Start configuration: q_0w

One step of computation:

- If $\delta(q, b) = (q', c, R)$, then ua q bv yields uac q'v
- If $\delta(q, b) = (q', c, L)$, then ua q bv yields u q' acv
- If $\delta(q,b)=(q',c,L)$, then q $b\overline{v}$ yields q' c

Accepting configuration: $q = q_{\text{accept}}$ Rejecting configuration: $q = q_{\text{reject}}$

How a TM Computes

M accepts input w if there exists a sequence of configurations C_1 , ..., C_k such that:

- $C_1 = q_0 w$
- C_i yields C_{i+1} for every i
- \bullet C_k is an accepting configuration

$L(M)$ = the set of all strings w which M accepts A is Turing-recognizable if $A = L(M)$ for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on W

Recognizers vs. Deciders

 $L(M)$ = the set of all strings w which M accepts

A is Turing-recognizable if $A = L(M)$ for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on W

A is (Turing-)decidable if $A = L(M)$ for some TM M which halts on every input

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject}

Which of the following is true about the relationship between decidable and recognizable languages?

- a) The decidable languages are a subset of the recognizable languages
- b) The recognizable languages are a subset of the decidable languages
- c) They are incomparable: There might be decidable languages which are not recognizable and vice versa

Example: Arithmetic on a TM

The following TM decides $\text{MULT} = \{a^l b^j c^k \mid i \times j = k\}$: On input string w :

- 1. Check w is formatted correctly
- 2. For each a appearing in w :
- 3. For each b appearing in w :
- 4. Attempt to cross off a c . If none exist, reject.
- 5. If all c' s are crossed off, accept. Else, reject.

Example: Arithmetic on a TM

The following TM decides $\text{MULT} = \{a^l b^j c^k \mid i \times j = k\}$: On input string w :

- 1. Scan the input from left to right to determine whether it is a member of $L(a^*b^*c^*)$
- 2. Return head to left end of tape
- 3. Cross off an α if one exists. Scan right until a b occurs. Shuttle between b 's and c 's crossing off one of each until all b 's are gone. Reject if all c 's are gone but some 's remain.
- 4. Restore crossed off b's. If any a 's remain, repeat step 3.
- 5. If all c' s are crossed off, accept. Else, reject.

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?

 $L =$

 \bullet *L* is Turing-recognizable

 \bullet *L* is not decidable (1949-70)

2/28/2024 CS332 - Theory of Computation 16

TM Variants

How Robust is the TM Model?

Does changing the model result in different languages being recognizable / decidable?

So far we've seen…

- We can require that NFAs have a single accept state
- Adding nondeterminism does not change the languages recognized by finite automata

Other modifications possible too: E.g., allowing DFAs to have multiple passes over their input does not increase their power

Turing machines have an astonishing level of robustness

TMs are equivalent to…

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue
- Primitive recursive functions
- Cellular automata

…

Equivalent TM models

• TMs that are allowed to "stay put" instead of moving left or right

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$

TMs with stay put are *at least* as powerful as basic TMs

(Every basic TM is a TM with stay put that never stays put)

How would you show that TMs with stay put are *no more* powerful than basic TMs?

- a) Convert any basic TM into an equivalent TM with stay put
- b) Convert any TM with stay put into an equivalent basic TM
- c) Construct a language that is recognizable by a TM with stay put, but not by any basic TM
- d) Construct a language that is recognizable by a basic TM, but not by any TM with stay put

Equivalent TM models

• TMs that are allowed to "stay put" instead of moving left or right

$$
\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}
$$

Proof that TMs with stay put are no more powerful:

Simulation: Our goal is to convert any TM M with stay put into an equivalent basic TM M'

How? Replace every stay put instruction in M with a move right instruction, followed by a move left instruction in M'

Equivalent TM models

• TMs with a 2-way infinite tape, unbounded left to right

Tape $... \quad | \quad a \quad b \quad a \quad | \quad ...$ Input …

Proof that TMs with 2-way infinite tapes are no more powerful:

Simulation: Convert any TM M with 2-way infinite tape into a 1-way infinite TM M' with a "two-track tape"

Implementation-Level Simulation

Given 2-way TM M construct a basic TM M' as follows. TM $M' =$ "On input $w = w_1 w_2 ... w_n$:

1. Format 2-track tape with contents $\mathcal{L}(W_1, \square), (W_2, \square), ..., (W_n, \square)$

2. To simulate one move of M:

a) If working on upper track, read/write to the first position of cell under tape head, and move in the same direction as M

b) If working on lower track, read/write to second position of cell under tape head, and move in the opposite direction as M

c) If move results in hitting ζ , switch to the other track. "

Formalizing the Simulation

Given 2-way TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, construct $M' = (Q', \Sigma, \Gamma', \delta', q_0', q_{\text{accept}}', q_{\text{reject}}')$

New tape alphabet: $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$ New state set: $Q' = Q \times \{+, -\}$

 $(q, +)$ means "in state q and working on upper track" $(q, -)$ means "in state q and working on lower track" New transitions:

If $\delta(p, a_{-}) = (q, b, L)$, let $\delta'(p, -), (a_{-}, a_{+}) = ((q, -), (b, a_{+}), R)$ Also need new transitions for moving right, lower track, hitting \$, initializing input into 2-track format

Multi-Tape TMs

Fixed number of tapes k

(can't depend on input or change during computation)

Transition function $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$

Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k -tape TM M with can be simulated by an equivalent single-tape TM M'

Simulating Multiple Tapes

Implementation-Level Description

On input $w = w_1 w_2 ... w_n$

- 1. Format tape into # $\dot{w_1}w_2$ … w_n # $\dot{\sqcup}$ # $\dot{\sqcup}$ # … #
- 2. For each move of M :

Scan left-to-right, finding current symbols Scan left-to-right, writing new symbols, Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank If a tape head goes off left end, move back right

Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it's enough to construct a multi-tape TM

Often easier to construct multi-tape TMs Ex. Decider for $\{a^l b^j | i > j\}$

Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it's enough to construct a multi-tape TM

Very helpful for proving closure properties

Ex. Closure of recognizable languages under union. Suppose M_1 is a single-tape TM recognizing L_1 , M_2 is a single-tape TM recognizing L_2