
BU CS 332 – Theory of Computation

Lecture 10:
• Turing Machines
• TM Variants and Closure 

Properties

Reading:
Sipser Ch 3.1-3.3

Mark Bun
February 28, 2024

https://forms.gle/CrFE8LxSoNBdKe3d8 

https://forms.gle/CrFE8LxSoNBdKe3d8


The Basic Turing Machine (TM)
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Tape 𝑎𝑎 𝑏𝑏 𝑎𝑎 𝑎𝑎

Finite 
control

…

• Input is written on an infinitely long tape
• Head can both read and write, and move in both 

directions
• Computation halts as soon as control reaches 

“accept” or “reject” state

Input



Three Levels of Abstraction
High-Level Description
An algorithm (like CS 330)

Implementation-Level Description
Describe (in English) the instructions for a TM
• How to move the head
• What to write on the tape

Low-Level Description
State diagram or formal specification
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Example
Determine if a string 𝑤𝑤 ∈ 0 ∗ is in the language
𝐴𝐴 = 02𝑛𝑛 𝑛𝑛 ≥ 0}

High-Level Description

Repeat the following forever:
• If there is exactly one 0 in 𝑤𝑤, accept
• If there is an odd > 1 number of 0s in 𝑤𝑤, reject
• Delete half of the 0s in 𝑤𝑤
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Example
Determine if a string 𝑤𝑤 ∈ 0 ∗ is in the language
𝐴𝐴 = 02𝑛𝑛 𝑛𝑛 ≥ 0}

Implementation-Level Description

1. While moving the tape head left-to-right:
a) Cross off every other 0 (i.e., replace it with symbol x)
b) If there is exactly one 0 when we reach the right end of the tape, 

accept
c) If there is an odd (> 1) number of 0s when we reach the right end of 

the tape, reject
2. Return the head to the left end of the tape
3. Go back to step 1
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Example Determine if a string 𝑤𝑤 ∈ 𝐴𝐴 = 02𝑛𝑛 𝑛𝑛 ≥ 0}
Low-Level Description
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Formal Definition of a TM
A TM is a 7-tuple 𝑀𝑀 = (𝑄𝑄, Σ, Γ, 𝛿𝛿, 𝑞𝑞0, 𝑞𝑞accept, 𝑞𝑞reject)
• 𝑄𝑄 is a finite set of states
• Σ is the input alphabet (does not include ⊔)
• Γ is the tape alphabet (contains ⊔ and Σ)
• 𝛿𝛿 is the transition function

…more on this later
• 𝑞𝑞0 ∈ 𝑄𝑄 is the start state
• 𝑞𝑞accept ∈ 𝑄𝑄 is the accept state
• 𝑞𝑞reject ∈ 𝑄𝑄 is the reject state (𝑞𝑞reject ≠ 𝑞𝑞accept)
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TM Transition Function
𝛿𝛿 ∶ 𝑄𝑄 × Γ → 𝑄𝑄 × Γ × {𝐿𝐿,𝑅𝑅}

𝐿𝐿 means “move left” and 𝑅𝑅 means “move right”
𝛿𝛿 𝑝𝑝, 𝑎𝑎 = (𝑞𝑞, 𝑏𝑏,𝑅𝑅) means:

• Replace 𝑎𝑎 with 𝑏𝑏 in current cell
• Transition from state 𝑝𝑝 to state 𝑞𝑞
• Move tape head right

𝛿𝛿 𝑝𝑝, 𝑎𝑎 = (𝑞𝑞, 𝑏𝑏, 𝐿𝐿) means:
• Replace 𝑎𝑎 with 𝑏𝑏 in current cell
• Transition from state 𝑝𝑝 to state 𝑞𝑞
• Move tape head left UNLESS we are at left end of tape, in 

which case don’t move
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Configuration of a TM: Formally
A configuration is a string 𝑢𝑢𝑞𝑞𝑢𝑢 where 𝑞𝑞 ∈ 𝑄𝑄 and 𝑢𝑢, 𝑢𝑢 ∈ Γ∗

• Tape contents = 𝑢𝑢𝑢𝑢 (followed by infinitely many blanks ⊔)
• Current state = 𝑞𝑞
• Tape head on first symbol of 𝑢𝑢
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𝑞𝑞5

…

Example:     101𝑞𝑞50111



How a TM Computes

Start configuration: 𝑞𝑞0𝑤𝑤

One step of computation:
• If 𝛿𝛿 𝑞𝑞, 𝑏𝑏 = (𝑞𝑞𝑞, 𝑐𝑐,𝑅𝑅), then 𝑢𝑢𝑎𝑎 𝑞𝑞 𝑏𝑏𝑢𝑢 yields 𝑢𝑢𝑎𝑎𝑐𝑐 𝑞𝑞𝑞 𝑢𝑢
• If 𝛿𝛿 𝑞𝑞, 𝑏𝑏 = (𝑞𝑞𝑞, 𝑐𝑐, 𝐿𝐿), then 𝑢𝑢𝑎𝑎 𝑞𝑞 𝑏𝑏𝑢𝑢 yields 𝑢𝑢 𝑞𝑞𝑞 𝑎𝑎𝑐𝑐𝑢𝑢
• If 𝛿𝛿 𝑞𝑞, 𝑏𝑏 = (𝑞𝑞𝑞, 𝑐𝑐, 𝐿𝐿), then 𝑞𝑞 𝑏𝑏𝑢𝑢 yields 𝑞𝑞𝑞 𝑐𝑐𝑢𝑢

Accepting configuration: 𝑞𝑞 = 𝑞𝑞accept
Rejecting configuration: 𝑞𝑞 = 𝑞𝑞reject
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How a TM Computes
𝑀𝑀 accepts input 𝑤𝑤 if there exists a sequence of 
configurations 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 such that:
• 𝐶𝐶1 = 𝑞𝑞0𝑤𝑤
• 𝐶𝐶𝑖𝑖 yields 𝐶𝐶𝑖𝑖+1 for every 𝑖𝑖
• 𝐶𝐶𝑘𝑘 is an accepting configuration

𝐿𝐿(𝑀𝑀) = the set of all strings 𝑤𝑤 which 𝑀𝑀 accepts
𝐴𝐴 is Turing-recognizable if 𝐴𝐴 = 𝐿𝐿(𝑀𝑀) for some TM 𝑀𝑀:
• 𝑤𝑤 ∈ 𝐴𝐴 ⟹ 𝑀𝑀 halts on 𝑤𝑤 in state 𝑞𝑞accept
• 𝑤𝑤 ∉ 𝐴𝐴 ⟹ 𝑀𝑀 halts on 𝑤𝑤 in state 𝑞𝑞reject OR

𝑀𝑀 runs forever on 𝑤𝑤
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Recognizers vs. Deciders
𝐿𝐿(𝑀𝑀) = the set of all strings 𝑤𝑤 which 𝑀𝑀 accepts

𝐴𝐴 is Turing-recognizable if 𝐴𝐴 = 𝐿𝐿(𝑀𝑀) for some TM 𝑀𝑀:
• 𝑤𝑤 ∈ 𝐴𝐴 ⟹ 𝑀𝑀 halts on 𝑤𝑤 in state 𝑞𝑞accept
• 𝑤𝑤 ∉ 𝐴𝐴 ⟹ 𝑀𝑀 halts on 𝑤𝑤 in state 𝑞𝑞reject OR

𝑀𝑀 runs forever on 𝑤𝑤

𝐴𝐴 is (Turing-)decidable if 𝐴𝐴 = 𝐿𝐿(𝑀𝑀) for some TM 𝑀𝑀
which halts on every input

• 𝑤𝑤 ∈ 𝐴𝐴 ⟹ 𝑀𝑀 halts on 𝑤𝑤 in state 𝑞𝑞accept
• 𝑤𝑤 ∉ 𝐴𝐴 ⟹ 𝑀𝑀 halts on 𝑤𝑤 in state 𝑞𝑞reject
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Recognizers vs. Deciders

Which of the following is true about the relationship 
between decidable and recognizable languages?

a) The decidable languages are a subset of the 
recognizable languages

b) The recognizable languages are a subset of the 
decidable languages

c) They are incomparable: There might be decidable 
languages which are not recognizable and vice versa
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Example: Arithmetic on a TM
The following TM decides MULT = 𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗𝑐𝑐𝑘𝑘 𝑖𝑖 × 𝑗𝑗 = 𝑘𝑘}:
On input string 𝑤𝑤:
1. Check 𝑤𝑤 is formatted correctly
2. For each 𝑎𝑎 appearing in 𝑤𝑤:
3. For each 𝑏𝑏 appearing in 𝑤𝑤:
4. Attempt to cross off a 𝑐𝑐. If none exist, reject.
5. If all 𝑐𝑐’s are crossed off, accept. Else, reject.
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Example: Arithmetic on a TM
The following TM decides MULT = 𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗𝑐𝑐𝑘𝑘 𝑖𝑖 × 𝑗𝑗 = 𝑘𝑘}:
On input string 𝑤𝑤:
1. Scan the input from left to right to determine whether 

it is a member of 𝐿𝐿 𝑎𝑎∗𝑏𝑏∗𝑐𝑐∗

2. Return head to left end of tape
3. Cross off an 𝑎𝑎 if one exists. Scan right until a 𝑏𝑏 occurs. 

Shuttle between 𝑏𝑏’s and 𝑐𝑐’s crossing off one of each 
until all 𝑏𝑏’s are gone. Reject if all 𝑐𝑐’s are gone but some 
𝑏𝑏’s remain.

4. Restore crossed off 𝑏𝑏’s. If any 𝑎𝑎’s remain, repeat step 3. 
5. If all 𝑐𝑐’s are crossed off, accept. Else, reject.
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Back to Hilbert’s Tenth Problem
Computational Problem: Given a Diophantine equation, does 
it have a solution over the integers?
𝐿𝐿 =
• 𝐿𝐿 is Turing-recognizable

• 𝐿𝐿 is not decidable (1949-70)
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TM Variants
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How Robust is the TM Model?
Does changing the model result in different languages being 
recognizable / decidable?

So far we’ve seen…
- We can require that NFAs have a single accept state
- Adding nondeterminism does not change the languages 

recognized by finite automata
Other modifications possible too: E.g., allowing DFAs to have 
multiple passes over their input does not increase their power

Turing machines have an astonishing level of robustness
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TMs are equivalent to… 
• TMs with “stay put”
• TMs with 2-way infinite tapes
• Multi-tape TMs
• Nondeterministic TMs
• Random access TMs
• Enumerators
• Finite automata with access to an unbounded queue
• Primitive recursive functions
• Cellular automata
…
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Equivalent TM models
• TMs that are allowed to “stay put” instead of moving left or 

right
𝛿𝛿 ∶ 𝑄𝑄 × Γ → 𝑄𝑄 × Γ × 𝐿𝐿,𝑅𝑅, 𝑆𝑆

TMs with stay put are at least as powerful as basic TMs
(Every basic TM is a TM with stay put that never stays put)

How would you show that TMs with stay put are no more 
powerful than basic TMs?
a) Convert any basic TM into an equivalent TM with stay put
b) Convert any TM with stay put into an equivalent basic TM
c) Construct a language that is recognizable by a TM with 

stay put, but not by any basic TM
d) Construct a language that is recognizable by a basic TM, 

but not by any TM with stay put
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Equivalent TM models
• TMs that are allowed to “stay put” instead of moving 

left or right
𝛿𝛿 ∶ 𝑄𝑄 × Γ → 𝑄𝑄 × Γ × 𝐿𝐿,𝑅𝑅, 𝑆𝑆

Proof that TMs with stay put are no more powerful:
Simulation: Our goal is to convert any TM 𝑀𝑀 with stay put 
into an equivalent basic TM 𝑀𝑀𝑞
How? Replace every stay put instruction in 𝑀𝑀 with a move 
right instruction, followed by a move left instruction in 𝑀𝑀’
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Equivalent TM models
• TMs with a 2-way infinite tape, unbounded left to right

Proof that TMs with 2-way infinite tapes are no more 
powerful:
Simulation: Convert any TM 𝑀𝑀 with 2-way infinite tape into 
a 1-way infinite TM 𝑀𝑀𝑞 with a “two-track tape”
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Tape 𝑎𝑎 𝑏𝑏 𝑎𝑎 …

Input

…



Implementation-Level Simulation
Given 2-way TM 𝑀𝑀 construct a basic TM 𝑀𝑀𝑞 as follows.
TM 𝑀𝑀𝑞 = “On input 𝑤𝑤 = 𝑤𝑤1𝑤𝑤2 …𝑤𝑤𝑛𝑛:
1.  Format 2-track tape with contents      

$, 𝑤𝑤1,⊔ , 𝑤𝑤2,⊔ , … , 𝑤𝑤𝑛𝑛,⊔

2.  To simulate one move of M:
a) If working on upper track, read/write to the first position of 

cell under tape head, and move in the same direction as 𝑀𝑀
b) If working on lower track, read/write to second position of 

cell under tape head, and move in the opposite direction as 𝑀𝑀
c) If move results in hitting $, switch to the other track.     ”
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Formalizing the Simulation
Given 2-way TM 𝑀𝑀 = (𝑄𝑄, Σ, Γ, 𝛿𝛿, 𝑞𝑞0, 𝑞𝑞accept, 𝑞𝑞reject), construct
𝑀𝑀′ = (𝑄𝑄′, Σ, Γ′, 𝛿𝛿′, 𝑞𝑞0′ , 𝑞𝑞accept′ , 𝑞𝑞reject′ )

New tape alphabet: Γ′ = (Γ × Γ) ∪ {$}
New state set: 𝑄𝑄′ = 𝑄𝑄 × {+,−}

(𝑞𝑞, +) means “in state 𝑞𝑞 and working on upper track”
(𝑞𝑞,−) means “in state 𝑞𝑞 and working on lower track”

New transitions:
If 𝛿𝛿 𝑝𝑝,𝑎𝑎− = (𝑞𝑞, 𝑏𝑏, 𝐿𝐿), let 𝛿𝛿𝑞 𝑝𝑝,− , 𝑎𝑎−,𝑎𝑎+ = ( 𝑞𝑞,− , 𝑏𝑏,𝑎𝑎+ ,𝑅𝑅)
Also need new transitions for moving right, lower track, hitting $,     

initializing input into 2-track format
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Multi-Tape TMs
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𝑏𝑏 𝑏𝑏 𝑎𝑎 𝑎𝑎 𝑎𝑎

Finite 
control 𝑎𝑎 𝑏𝑏 ⊔ 𝑎𝑎 𝑎𝑎

⊔ 𝑏𝑏 𝑎𝑎 𝑎𝑎 𝑐𝑐

Fixed number of tapes 𝑘𝑘 

Transition function 𝛿𝛿 ∶ 𝑄𝑄 × Γ𝑘𝑘  → 𝑄𝑄 × Γ𝑘𝑘 × 𝐿𝐿,𝑅𝑅, 𝑆𝑆 𝑘𝑘

(𝑘𝑘 can’t depend on input or change 
during computation)



Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every 𝑘𝑘-tape TM 𝑀𝑀 with can be simulated by an 
equivalent single-tape TM 𝑀𝑀𝑞
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𝑏𝑏 𝑏𝑏 𝑎𝑎 𝑎𝑎

Finite 
control 𝑎𝑎 𝑏𝑏 ⊔ 𝑎𝑎

⊔ 𝑏𝑏 𝑎𝑎 𝑎𝑎

⊔ 𝑏𝑏 𝑎𝑎 𝑎𝑎 𝑐𝑐 #𝑎𝑎 𝑏𝑏 ⊔ 𝑎𝑎 #𝑏𝑏 𝑏𝑏 𝑎𝑎 𝑎𝑎 #
Finite 

control



Simulating Multiple Tapes
Implementation-Level Description

On input 𝑤𝑤 = 𝑤𝑤1𝑤𝑤2 …𝑤𝑤𝑛𝑛
1.  Format tape into # �̇�𝑤1𝑤𝑤2 …𝑤𝑤𝑛𝑛# ⊔̇ # ⊔̇ # … #
2.  For each move of 𝑀𝑀:

Scan left-to-right, finding current symbols
Scan left-to-right, writing new symbols,
Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank
If a tape head goes off left end, move back right
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Why are Multi-Tape TMs Helpful?
To show a language is Turing-recognizable or decidable, it’s 
enough to construct a multi-tape TM

Often easier to construct multi-tape TMs
Ex. Decider for 𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗 𝑖𝑖 > 𝑗𝑗}
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Why are Multi-Tape TMs Helpful?
To show a language is Turing-recognizable or decidable, it’s 
enough to construct a multi-tape TM

Very helpful for proving closure properties
Ex. Closure of recognizable languages under union. Suppose 𝑀𝑀1 is a 
single-tape TM recognizing 𝐿𝐿1, 𝑀𝑀2 is a single-tape TM recognizing 𝐿𝐿2
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