BU CS 332 —

https://forms.gle/1INhrfwEdVXhpinPVS8

heory of Computation

= -

Lecture 12:

e Church-Turing Thesis
* Decidable Languages

e Universal TM

’ '.I |

Reading:
Sipser Ch 3.3, 4.1

MWS de IIL59 e
o ke
Mark Bun
March 6, 2024

Last Time: Nondeterministic TMSs

An NTM N accepts input w if when run on w it accepts on at least
one computational branch

L(N) = {w | N accepts input w}

w € L(N) = there exists a branch of N’s computation leading it to
accept input w

w & L(N) = all branches of N’s computation lead it to reject, run

fWo reach any state on input w

An NTM N is a decider if on every input, it halts on every
computational branch

w € L(N) = there exists a branch of N’s computation leading it to
accept input w

w & L(N) = all branches of N’s computation lead it to reject input w

3/6/2024 CS332 - Theory of Computation 2

Nondeterministic TMs

Theorem: Every nondeterministic TM can be simulated by
an equivalent deterministic TM

Proof idea: Explore “tree of possible computations” wk~ NT#]

N H mn
lm o Tk

3/6/2024 CS332 - Theory of Computation 3

Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent
deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM
(See Sipser for full description)

Input w to N (read-only)

.. v : : .
Finite Simulation tape (run N on w using
wy | U | # |ws [wy L .
control nondeterministic choices from tape 3)

1|13 |3 |7 Address in computation tree

3/6/2024 CS332 - Theory of Computation

TMs are equivalent to...

* TMs with “stay put”
 TMs with 2-way infinite tapes
* Multi-tape TMs
* Nondeterministic TMs
“+ Random access TMs
* Enumerators
* Finite automata with access to an unbounded queue
* Primitive recursive functions
* Cellular automata

Church-Turing Thesis

The equivalence of these models is a mathematical
theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these

models) captures our'intuitive notion of algorithms
Qe srphe) normahee, defia o

Church-Turing Thesis v2: Any physically realizable model
of computation can be simulated by the basic TM

Oesmpm, envital | falar fichle_

The Church-Turing Thesis is not a mathematical
statement! Can’t be mathematically proved

3/6/2024 CS332 - Theory of Computation 6

Decidable Languages

3/6/2024 (CS332 - Theory of Computat ion

1928 — The Entscheidungsproblem

The “Decision Problem”

" Wa‘“lm‘k al du'elﬂh""\
Is there an algorithm which takes as input a formula (in first-
order logic) and decides whether it’s logically valid?

Qeotns” + (an v hofe fo aulom 4#«-«4"] proe Heorens !

¢ Can wWeHemaltfciag gulomde Heugles out
0(‘ a ‘50\07,

3/6/2024 CS332 - Theory of Computation 8

Questions about regular languages
* Given a DFA D and a string w, does D accept input w?
* Given a DFA D, does D recognize the empty language?

* Given DFAs D4, D,, do they recognize the same
language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language,
and decide them using Turing machines

Questions about regular languages

Design a TM which takes as input a DFA D and a string w,
and determines whether D accepts w)
Qosime @ Cuodiy o oSty " veted for o

How should the input to this TM be represented?

Let D = (Q, %, 0, qg, F). List each component of the tuple
separated by #

* Represent Q by ,-separated binary strings
* Represent X by ,-separated binary strings

* Represent 0 : Q X X — (Q by a ,-separated list of triples
(p,a,q), ..

4'? Was ¢ ,4»5&\-,()
Denote the encoding of D, w by (D, w)

—_—

3/6/2024 CS332 - Theory of Computation 10

i 3“‘?‘3 b b

po o!
Example o | (\ (\
O-< 9,45 ., 15 4.F)
7 =]d by _ O = (A _>'a
.) \,_/l * @ @
8(%‘q)= %, ,--- a
W-\- slale ‘Lo
Augr shit g,
e ot a\(‘““‘".r taihar farchon
—)
(Op= 0,1 # 0, #(o 0, 1), (o, '0) ,(1,0,0, (L, 1,1)
4040
)

Ghurk aa@’

3/6/2024 CS332 - Theory of Computation 11

Representation independence

Computability (i.e., decidability and recognizability) is not

affected by the precise choice of encoding
Ix ™M WM decdes soe laguage Miclwiyg OFhs unde er.odsy -7

Hade a Sffeent &n«oJEj [oJ

Why? A TM can always convert between different (reasonable)
encodings Te Glosy ™ N docds Hutr laguoe ander ercsdny 3-) -

On mpl 5;03 .
) (net 1@ + <02

1) n Mo Wab €07 Aadh f acds,
Reset ‘f rejech.

From now on, we’ll take () to mean “some reasonable
encoding”

3/6/2024 CS332 - Theory of Computation 12

|II

A “universal” algorithm for recognizing regular

languages Valiew: Gin OFA O ad

L <, dbe ac
Apga = {(D,w) |DFA D accepts w} ST P wet

Theorem: Apgy is decidable < + fcowd] 10

Tape® RN TeLa
T wdex © lrad °'('0

Proof: Define a (high-level) 3-tape TM M on input (D w):

1. Checkif (D, w) is a valid encoding (reject if not) p,'f'f;”:}
Tae 3 ol b\) s

2. Simulate D onw, i.e,,) ou m foe \
: : : P to ot
* Tape 2: Maintain w and head location of D Fom

«304'
* Tape 3: Maintain state of D, update according to 0 descrphons

3. Acceptif D ends in an accept state, reject otherwise

3/6/2024 CS332 - Theory of Computation 13

Other decidable languages
Appa = {{D,w) | DFA D accepts w}

Anra = {{N,w) | NFA N accepts w}

Arex = {{R,w) | regular expression R generates w}

3/6/2024 CS332 - Theory of Computation

14

NFA Acceptance

bir an NEA N od shiy w, des N ocept 0

Which of the following describes a decider for Axypa =
{{N,w) |INFA N accepts w}?

a) Using a deterministic TM, simulate N on w, alwm_:ﬂ?g
the first nondeterministic choice at each step. Accept if
accepts, and reject otherwise. Mqhb png ar acghy baxly

b) Using a deterministic TM, simulate all possible choices of
N on w for 1 step of computation, 2 steps of computation,

etc. Accept whenever some simulation accepts.
Malt lop foeor Wt NFB o et aqpt w |

c)/ Use the subset construction to convert N to an equivalent
DFA M. Simulate M on w, accept if it accepts, and reject
otherwise.

Regular Languages are Decidable

Theorem: Every regular language L is decidable

Proof 1: If L is regular, it is recognized by a DFA D. Convert
this DFAtoa TM M. Then M decides L.

Proof 2: If L is regular, it is recognized by a DFA D, The
following TM Mg_decides L.

On input w:
1. Run the decider for Apga on input (D, w)

2. Accept if the decider accepts; reject otherwise

C__‘f‘;A.'— Mo decides L
Do WEL =2 0 acgts @ =D L)) ehort =) didr acph

WEL =D 0 eieds v D L0 FAm D daodor ey

3/6/2024 CS332 - Theory of Computation 16

Classes of Languages

recognizable

regular

3/6/2024 CS332 - Theory of Computation

17

More Decidable Languages: Emptiness Testing

Theorem: Eppa = {{D) | D isa DFA such that L(D) = @} is

. ¥ 8 a 3 J" ¢ mt h
decidable Couthval pavem’. Gin a 44 oefmb > *2.;;, re
Proof: The following TM decides Epgp

On input (D), where D is a DFA with k states:

1. Perform k steps of breadth-first search on state diagram

of D to determine if an accept state is reachable from the
start state

2. Reject if a DFA accept state is reachable; accept otherwise

L07€ Ega =2 0 ek ey sy 2 D bmlie bo tedr an acgh sie
or o« Som skt shie of 0
D &S L)y D ag ats

: 0 ach S shiy A SS & e fo cach e acgh shie
407¢ A =D Sy D AP suedy = db_itchy

3/6/2024 CS332 - Theory of Computation 18

Epra Example

start —>{‘l()\
0=

C
| q (
\2)

|

Coclage acylt Shi-e (s)

reachdyy le
=2 L(0) - ﬁ
=) al9 . a_tqf'l_j .

3/6/2024

CS332 - Theory of Computation

wot

19

New Deciders from Old: Equality Testing

EQDFA — {(Dl, Dz) Dl' D2 are DFAs and L(Dl) — L(Dz)}

. . p'_w.— 6;@\ OTA'b 00,01, J do
Theorem: EQppp is decidable by reomie Kt s lagusge]

Proof: The following TM decides EQppa
On input (D4, D,), where (D, D,) are DFAs:

1. Construct DFA_D recognizing the symmetric difference

L(Dl) AL(DZ) — {Qez‘t) 3 N R exaly e of 0 or 03
2. Run the decider for Epga on (D) and return its output
C%cc"ns'-,

% L0, 0 e Ecpn , don xl..a 0, acanh a.A 0, acgh
0, wsech o) and Ny ~seb W

=22 LLOY A 0 =p =2 €0 ¢ ford = acgh.
% CO07fEom, > DALY = cOfem D et

3/6/2024 CS332 - Theory of Computation 20

Symmetric Difference
AAB={w|w € Aorw € B but not both}

@
A N> QAB’@/)) (&07%)

Grmn Orhs D| and 0., Can W2 clobwe 9'°f°'!j € onghuchen g

& aksechn, coflenat, uniny fo osudt o PR Fo- AAL.
(wy o Thagh MR 4 sded md-md%)

3/6/2024 CS332 - Theory of Computation 21

Universal Turing Machine

3/6/2024 (CS332 - Theory o f Computat ion

Meta-Computational Languages

Appa = {{D,w) | DFA D accepts w}
Aty = {{M,w) | TM M accepts w}

Eppa = {{D) | DFA D recognizes the empty language @}
Ety = {{M) | TM M recognizes the empty language @}

EQpra = {{D1, Dy) | D, and D, are DFAs, L(D;) = L(D,)}
EQrym = {{M1, M3) | My and M, are TMs, L(M,) = L(M,)}

3/6/2024 CS332 - Theory of Computation 23

The Universal Turing Machine

Aty = {{M,w) | M is a TM that accepts input w} T
Theorem: Aty is Turing-recognizable

The following “Universal TM”_U recognizes Aty
On input (M, w):

1. Simulate running M on input w

2. If M accepts, accebt. If M rejects, reject.

3/6/2024 CS332 - Theory of Computation 24

Un

Why is the Universal TM not a decider for Aty ?

iversal TM and Arum

Amsgm,,a7| TM M aced et Wy

The following “Universal TM” U recognizes Aty

TTeY————

On input (M, w):

1.
2.

Simulate running M on input w
If M accepts, accept. If M rejects, reject.

t may reject inputs (M, w) where M accepts w

t may accept inputs (M, w) where M rejects w

t may loop on inputs (M, w) where M loops on w
t may loop on inputs (M, w) where M accepts w

More on the Universal TM

"It is possible to invent a single machine which can be used to compute any
computable sequence. If this machine U is supplied with a tape on the beginning of
which is written the S.D ["standard description"] of some computing machine M,
then U will compute the same sequence as M.”

- Turing, “On Computable Numbers...” 1936

* Foreshadowed general-purpose programmable computers

* No need for specialized hardware: Virtual machines as software

- Central Processing Unit

Control Unit

Instruction ‘ Control 1 Data Input » Arithmetic/Logic Unit
memory } [unit q memory Device

10 Memory Unit

Harvard architecture: von Neumann architecture:
Separate instruction and data pathways Programs can be treated as data

3/6/2024 CS332 - Theory of Computation 26

