BU CS 332 – Theory of Computation

https://forms.gle/7CAfuvEFAgwgbnYT6

Lecture 13:

- Countability
- Diagonalization
- Underidability?

Mark Bun March 18, 2024

Reading: Sipser Ch 4.1, 4.2

Last Time

Church-Turing Thesis

v1: The basic TM (and all equivalent models) capture our intuitive notion of algorithms

v2: Any physically realizable model of computation can be simulated by the basic TM

Decidable languages (from language theory)

$$A_{\text{DFA}} = \{\langle D, w \rangle \mid \text{DFA } D \text{ accepts input } w\}, \text{ etc.}$$

Universal Turing machine

A recognizer for $A_{TM} = \{\langle M, w \rangle \mid TM \ M \text{ accepts input } w\}$...but not a decider

Today: Some languages, including $A_{\rm TM}$, are *undecidable* But first, a math interlude...

Countability and Diagonalizaiton

What's your intuition?

Which of the following sets is the "biggest"?

- a) The natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- b) The even numbers: $E = \{2, 4, 6, ...\}$
- c) The positive powers of 2: $POW2 = \{2, 4, 8, 16, ...\}$

d) They all have the same size

Set Theory Review

A function $f: A \to B$ is

- 1-to-1 (injective) if $f(a) \neq f(a')$ for all $a \neq a'$
- onto (surjective) if for all $b \in B$, there exists $a \in A$ such that f(a) = b
- a correspondence (bijective) if it is 1-to-1 and onto, i.e., every b ∈ B has a unique a ∈ A with f(a) = b

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them

A set is **countable** if either

- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers

" countably infinite"

Examples of countable sets

$|E| = |SQUARES| = |POW2| = |\mathbb{N}|$

How to argue that a set S is countable $s = N \times N$ • Describe how to "list" the elements of S, usually in stages: Ex: Stage 1) List all pairs (x, y) such that x + y = 2 f(x) = (1, 1)Stage 2) List all pairs (x, y) such that x + y = 3 f(x) = (1, 2)f(x) = (1, 2)

Stage n) List all pairs (x, y) such that x + y = n + 1(n,) (n-1,2) (n-2, s).... (1, n)

- Explain why every element of S appears in the list Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage x + y - 1
- Define the bijection $f: \mathbb{N} \to S$ by f(n) = the n'th element in this list (ignoring duplicates if needed)

More examples of countable sets

- $\{0,1\}^*$ $\{e_{0}, 0, 0, 0, 0, \dots, 2\}$ stage 0. List all strings of length 1 $\{\langle M \rangle \mid M \text{ is a Turing machine}\}$ stage ni List all strings of length n or mark alphabet 30,13
- WLOG, LOG, LOG, LOG, LOG, LOG, LOG, Log< • $\mathbb{Q} = \{ rational numbers \}$ Bassially use the poof INXN contable Latorpet (x, y) as $\frac{1}{y}$ $\frac{1}{2} = \frac{2}{y}$
- If $A \subseteq B$ and B is countable, then A is countable
- If A and B are countable, then $A \times B$ is countable

(auntably infuite or fuite • S is countable if and only if there exists a surjection (an onto function) $f : \mathbb{N} \to S$

Another version of the dovetailing trick
Ex: Show that
$$\mathcal{F} = \{L \subseteq \{0, 1\}^* \mid L \text{ is finite}\}$$
 is countable
 $[L = \frac{2}{5} 0, 1, 0]$ is finite $L^2 = \frac{2}{5} 0^* 1 \text{ and } 5$ is determined
 $f = \frac{2}{5} \frac{1}{5}, \frac{1}{5}, \frac{2}{5}, \frac{2}{5}, \frac{1}{5}, \frac{2}{5}, \frac{$

So what isn't countable?

Cantor's Diagonalization Method

Georg Cantor 1845-1918

- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...

Some praise for his work:

"Scientific charlatan...renegade...corruptor of youth" –L. Kronecker

"Set theory is wrong...utter nonsense...laughable" -L. Wittgenstein

Uncountability of the reals

Theorem: The real interval [0, 1] is uncountable.

Proof: Assume for the sake of contradiction it were countable, and let $f : \mathbb{N} \rightarrow [0,1]$ be a surjection

n	Erl	$b_1 \neq d_1 f(n)$				
1	0271828	$0.d_1^1 d_2^1 d_3^1 d_4^1 d_5^1$	Oec.ml	ex pan visa	of	f (1)
2	0.311159	$0 . d_1^2 d_2^2 d_3^2 d_4^2 d_5^2 \dots$	1,2 "		of	fias
3	0.803530	$0 d_1^3 d_2^3 d_3^3 d_4^3 d_5^3 \dots^3$	7 02			
4		$0 . d_1^4 d_2^4 d_3^4 d_4^4 d_5^4 $				
5		$0.d_1^5 d_2^5 d_3^5 d_4^5 d_5^5$				
6=0.3	28					
Construct $b \in [0,1]$ which does not appear in this table						
-con	tradictio	n!				

 $b = 0. b_1 b_2 b_3 \dots$ where $b_n \neq d_n^n$ (digit n of f(n))

Diagonalization

This process of constructing a counterexample by "contradicting the diagonal" is called diagonalization

Structure of a diagonalization proof

Say you want to show that a set T is uncountable

- 1) Assume, for the sake of contradiction, that T is countable with surjection $f: \mathbb{N} \to T$
- 2) "Flip the diagonal" to construct an element $\underline{b \in T}$ such that $f(n) \neq b$ for every n

Ex: Let $b = 0. b_1 b_2 b_3 \dots$ where $b_n \neq d_n^n$ (where d_n^n is digit n of f(n))

3) Conclude (by contradiction) that f is not a surjection

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does not have the same size as X.

Proof: Assume for the sake of contradiction that there is a surjection $f: X \to P(X)$ (vidation $f: X \to P(X)$

What should we do?

- a) Show that for every $S \in P(X)$, there exists $x \in X$ such that f(x) = S
- b) Construct a set $S \in P(X)$ (meaning, $S \subseteq X$) that cannot be the output f(x) for any $x \in X$ violate support of f.
- c) Construct a set $S \in P(X)$ and two distinct $x, x' \in X$ such that f(x) = f(x') = S

Diagonalization argument

Assume a surjection $f: X \to P(X)$

Example ,81,33 Let $X = \{1, 2, 3\}, P(X) = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$ 2, $f(2) \neq \emptyset$, $f(3) \neq \{2\}^{2}$ Ex. $3 \in f(x)$? $1 \in f(x)$? $2 \in f(x)$? χ 1 N 2 do perds 3 => S T3 wet in the image of f $S \neq f(i)$ Construct $S = \{2, 5\}$ St flz) Heat SEX, SeP(x) $S \neq f(S)$ 3/18/2024 21 CS332 - Theory of Computation

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a surjection $f: X \rightarrow P(X)$

Construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$:

$$S = \{x \in X \mid x \notin f(x)\}$$

If S = f(y) for some $y \in X$,

then $y \in S$ if and only if $y \notin S$