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Where we are and where we’re going
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Church-Turing thesis: TMs capture all algorithms
Consequence: studying the limits of TMs reveals the limits 
of computation

Last time: Countability, uncountability, and diagonalization

Today: Existential proof that there are undecidable and 
unrecognizable languages

An explicit undecidable language
Reductions: Relate decidability / undecidability

of different problems



Last time: A general theorem about set sizes

Theorem: Let 𝑋𝑋 be any set. Then the power set 𝑃𝑃(𝑋𝑋) does 
not have the same size as 𝑋𝑋.

Proof: Assume for the sake of contradiction that there is a 
surjection 𝑓𝑓:𝑋𝑋 → 𝑃𝑃(𝑋𝑋)

Goal: Construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) that cannot be the output 
𝑓𝑓(𝑥𝑥) for any 𝑥𝑥 ∈ 𝑋𝑋
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Diagonalization argument
Assume a surjection 𝑓𝑓:𝑋𝑋 → 𝑃𝑃(𝑋𝑋)
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𝑥𝑥 𝑥𝑥1 ∈ 𝑓𝑓(𝑥𝑥)? 𝑥𝑥2 ∈ 𝑓𝑓(𝑥𝑥)? 𝑥𝑥3 ∈ 𝑓𝑓(𝑥𝑥)? 𝑥𝑥4 ∈ 𝑓𝑓(𝑥𝑥)?

𝑥𝑥1 Y N Y Y
𝑥𝑥2 N N Y Y
𝑥𝑥3 Y Y Y N
𝑥𝑥4 N N Y N

…

…

Define 𝑆𝑆 by flipping the diagonal:
  Put      𝑥𝑥𝑖𝑖 ∈ 𝑆𝑆 ⟺  𝑥𝑥𝑖𝑖 ∉ 𝑓𝑓(𝑥𝑥𝑖𝑖)



Last time: A general theorem about set sizes

Theorem: Let 𝑋𝑋 be any set. Then the power set 𝑃𝑃(𝑋𝑋) does 
not have the same size as 𝑋𝑋.

Proof: Assume for the sake of contradiction that there is a 
surjection 𝑓𝑓:𝑋𝑋 → 𝑃𝑃(𝑋𝑋)

Construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) that cannot be the output 𝑓𝑓(𝑥𝑥)
for any 𝑥𝑥 ∈ 𝑋𝑋:

𝑆𝑆 = 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥 ∉ 𝑓𝑓(𝑥𝑥)}
If 𝑆𝑆 = 𝑓𝑓(𝑦𝑦) for some 𝑦𝑦 ∈ 𝑋𝑋, 

then 𝑦𝑦 ∈ 𝑆𝑆 if and only if 𝑦𝑦 ∉ 𝑆𝑆
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Undecidable Languages

3/20/2024 CS332 - Theory of Computation 6



Undecidability / Unrecognizability
Definition: A language 𝐿𝐿 is undecidable if there is no TM 
deciding 𝐿𝐿

Definition: A language 𝐿𝐿 is unrecognizable if there is no 
TM recognizing 𝐿𝐿
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An existential proof
Theorem: There exists an undecidable language over {0, 1}
Proof: 

Set of all encodings of TM deciders:  𝑋𝑋 ⊆ {0, 1}∗

3/20/2024 CS332 - Theory of Computation 8

Set of all languages over {0, 1}:
a) 0, 1
b) 0, 1 ∗

c)  𝑃𝑃 0, 1 ∗  : The set of all subsets of 0, 1 ∗

d)  𝑃𝑃(𝑃𝑃 0, 1 ∗)  : The set of all subsets of the set of all 
    subsets of 0, 1 ∗



An existential proof
Theorem: There exists an undecidable language over {0, 1}
Proof: 

Set of all encodings of TM deciders:  𝑋𝑋 ⊆ {0, 1}∗

3/20/2024 CS332 - Theory of Computation 9

Set of all languages over {0, 1}:   𝑃𝑃 0, 1 ∗

There are more languages than there are TM deciders!
     ⇒ There must be an undecidable language



An existential proof
Theorem: There exists an unrecognizable language over {0, 1}
Proof: 

Set of all encodings of TMs:  𝑋𝑋 ⊆ {0, 1}∗
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Set of all languages over {0, 1}:   𝑃𝑃 0, 1 ∗

There are more languages than there are TM recognizers!
     ⇒ There must be an unrecognizable language



“Almost all” languages are undecidable

But how do we actually find one?
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An Explicit Undecidable 
Language
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Our power set size proof
Theorem: Let 𝑋𝑋 be any set. Then the power set 𝑃𝑃(𝑋𝑋) does 
not have the same size as 𝑋𝑋.

1) Assume, for the sake of contradiction, that there is a 
surjection 𝑓𝑓:𝑋𝑋 → 𝑃𝑃(𝑋𝑋)

2) “Flip the diagonal” to construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) such 
that 𝑓𝑓 𝑥𝑥 ≠ 𝑆𝑆 for every 𝑥𝑥 ∈ 𝑋𝑋

3) Conclude that 𝑓𝑓 is not onto, a contradiction

3/20/2024 CS332 - Theory of Computation 13



Specializing the proof
Theorem: Let 𝑋𝑋 be the set of all TM deciders. Then there 
exists an undecidable language in 𝑃𝑃 0, 1 ∗

1) Assume, for the sake of contradiction, that                
𝐿𝐿:𝑋𝑋 → 𝑃𝑃( 0, 1 ∗) is a surjection

2) “Flip the diagonal” to construct a language 𝑈𝑈𝑈𝑈 ∈
𝑃𝑃 0, 1 ∗ such that 𝐿𝐿 𝑀𝑀 ≠ 𝑈𝑈𝑈𝑈 for every 𝑀𝑀 ∈ 𝑋𝑋

3) Conclude that 𝐿𝐿 is not onto, a contradiction
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An explicit undecidable language
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TM 𝑀𝑀

𝑀𝑀1

𝑀𝑀2

𝑀𝑀3

𝑀𝑀4

…

Why is it possible to enumerate all TMs like this?

a) The set of all TMs is finite
b) The set of all TMs is countably infinite
c) The set of all TMs is uncountable



An explicit undecidable language
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TM 𝑀𝑀 𝑀𝑀( 𝑀𝑀1 )? 𝑀𝑀( 𝑀𝑀2 )? 𝑀𝑀( 𝑀𝑀3 )? 𝑀𝑀( 𝑀𝑀4 )?

𝑀𝑀1 Y N Y Y

𝑀𝑀2 N N Y Y
𝑀𝑀3 Y Y Y N
𝑀𝑀4 N N Y N

…

…

𝑈𝑈𝑈𝑈 = 𝑀𝑀  𝑀𝑀 is a TM that does not accept on input 𝑀𝑀 } 
Claim: 𝑈𝑈𝑈𝑈 is undecidable

𝑈𝑈( 𝑈𝑈 )?

𝑈𝑈



An explicit undecidable language
Theorem: 𝑈𝑈𝑈𝑈 = 𝑀𝑀 𝑀𝑀 is a TM that does not accept on

input 𝑀𝑀 } is undecidable
Proof: Suppose for contradiction that TM 𝑈𝑈 decides 𝑈𝑈𝑈𝑈
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A more useful undecidable language
𝐴𝐴TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Theorem: 𝐴𝐴TM is undecidable
Proof: Assume for the sake of contradiction that TM 𝐻𝐻
decides 𝐴𝐴TM:

𝐻𝐻 𝑀𝑀,𝑤𝑤 = � accept if 𝑀𝑀 accepts 𝑤𝑤
reject if 𝑀𝑀 does not accept 𝑤𝑤

Idea: Show that 𝐻𝐻 can be used to construct a decider for 
the (undecidable) language 𝑈𝑈𝑈𝑈 -- a contradiction. 
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A more useful undecidable language
𝐴𝐴TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Proof (continued):
Suppose, for contradiction, that 𝐻𝐻 decides 𝐴𝐴TM
Consider the following TM 𝑈𝑈:

“On input 𝑀𝑀 where 𝑀𝑀 is a TM:
1. Run 𝐻𝐻 on input 𝑀𝑀, 𝑀𝑀
2. If 𝐻𝐻 accepts, reject. If 𝐻𝐻 rejects, accept.”

Claim: 𝑈𝑈 decides 𝑈𝑈𝑈𝑈 = 𝑀𝑀 TM 𝑀𝑀 does not accept 𝑀𝑀 }

…but this language is undecidable!
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Unrecognizable Languages
Theorem: A language 𝐿𝐿 is decidable if and only if 𝐿𝐿 and �𝐿𝐿
are both Turing-recognizable.
Corollary: 𝐴𝐴TM is unrecognizable

Proof of Theorem:
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Unrecognizable Languages
Theorem: A language 𝐿𝐿 is decidable if and only if 𝐿𝐿 and �𝐿𝐿
are both Turing-recognizable.
Proof continued:
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Classes of Languages
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regular

recognizable

decidable



Reductions
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Scientists vs. Engineers
A computer scientist and an engineer are stranded on a 
desert island. They find two palm trees with one coconut 
on each. The engineer climbs a tree, picks a coconut and 
eats.

The computer scientist climbs the second tree, picks a 
coconut, climbs down, climbs up the first tree and places 
it there, declaring success. 
“Now we’ve reduced the problem to one we’ve already 
solved.”    (Please laugh)
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Reductions
A reduction from problem 𝐴𝐴 to problem 𝐵𝐵 is an algorithm 
solving problem 𝐴𝐴 which uses an algorithm solving 
problem 𝐵𝐵 as a subroutine

If such a reduction exists, we say “𝐴𝐴 reduces to 𝐵𝐵”
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Reductions
A reduction from problem 𝐴𝐴 to problem 𝐵𝐵 is an algorithm 
solving problem 𝐴𝐴 which uses an algorithm solving 
problem 𝐵𝐵 as a subroutine
If such a reduction exists, we say “𝐴𝐴 reduces to 𝐵𝐵”

If 𝐴𝐴 reduces to 𝐵𝐵, and 𝐵𝐵 is decidable, what can we say 
about 𝐴𝐴?
a) 𝐴𝐴 is decidable
b) 𝐴𝐴 is undecidable
c) 𝐴𝐴 might be either decidable or undecidable
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Two uses of reductions
Positive uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝐴𝐴
is also decidable
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𝐸𝐸𝑄𝑄DFA = ⟨𝑈𝑈1,𝑈𝑈2⟩ 𝑈𝑈1,𝑈𝑈2 are DFAs and 𝐿𝐿(𝑈𝑈1) = 𝐿𝐿(𝑈𝑈2)}
Theorem: 𝐸𝐸𝑄𝑄DFA is decidable
Proof: The following TM decides 𝐸𝐸𝑄𝑄DFA

On input ⟨𝑈𝑈1,𝑈𝑈2⟩ , where 𝑈𝑈1,𝑈𝑈2  are DFAs:
1. Construct a DFA 𝑈𝑈 that recognizes the symmetric 

difference 𝐿𝐿(𝑈𝑈1) △ 𝐿𝐿(𝑈𝑈2)
2. Run the decider for 𝐸𝐸DFA on 𝑈𝑈  and return its output



Two uses of reductions
Negative uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐴𝐴 is undecidable, 
then 𝐵𝐵 is also undecidable
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𝐴𝐴TM = 𝑀𝑀,𝑤𝑤  𝑀𝑀 is a TM that accepts input 𝑤𝑤} 
Suppose 𝐻𝐻 decides 𝐴𝐴TM

Consider the following TM 𝑈𝑈.
On input 𝑀𝑀  where 𝑀𝑀 is a TM:
1. Run 𝐻𝐻 on input 𝑀𝑀, 𝑀𝑀
2. If 𝐻𝐻 accepts, reject. If 𝐻𝐻 rejects, accept.

Claim: 𝑈𝑈 decides 
𝑈𝑈𝑈𝑈 = 𝑀𝑀  𝑀𝑀 is a TM that does not accept input 𝑀𝑀 }



Two uses of reductions
Negative uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐴𝐴 is undecidable, 
then 𝐵𝐵 is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that 𝐵𝐵 is decidable
2. Using a decider for 𝐵𝐵 as a subroutine, construct an 

algorithm deciding 𝐴𝐴
3. But 𝐴𝐴 is undecidable. Contradiction!
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Halting Problem
Computational problem: Given a program (TM) and input 𝑤𝑤, 
does that program halt (either accept or reject) on input 𝑤𝑤?
Formulation as a language:

𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Ex. 𝑀𝑀 = “On input 𝑥𝑥 (a natural number written in binary):
For each 𝑦𝑦 = 1, 2, 3, … :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.”

Is 𝑀𝑀, 101 ∈ 𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM?
a) Yes, because 𝑀𝑀 accepts on input 101
b) Yes, because 𝑀𝑀 rejects on input 101
c) No, because 𝑀𝑀 rejects on input 101
d) No, because 𝑀𝑀 loops on input 101
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Halting Problem
Computational problem: Given a program (TM) and input 𝑤𝑤, 
does that program halt (either accept or reject) on input 𝑤𝑤?
Formulation as a language:

𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Ex. 𝑀𝑀 = “On input 𝑥𝑥 (a natural number in binary):
For each 𝑦𝑦 = 1, 2, 3, … :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.”

𝑀𝑀′ = “On input 𝑥𝑥 (a natural number in binary):
For each 𝑦𝑦 = 1, 2, 3, … , 𝑥𝑥 :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.
Reject.”
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Halting Problem
𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Theorem: 𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝐻𝐻
for 𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM. We construct a decider for 𝑉𝑉 for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝐻𝐻 on input 𝑀𝑀,𝑤𝑤
2. If 𝐻𝐻 rejects, reject
3. If 𝐻𝐻 accepts, run 𝑀𝑀 on 𝑤𝑤
4. If 𝑀𝑀 accepts, accept

Otherwise, reject.

This is a reduction from 𝐴𝐴TM to 𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM
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Halting Problem
Computational problem: Given a program (TM) and input 
𝑤𝑤, does that program halt on input 𝑤𝑤?
• A central problem in formal verification
• Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances, 
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of 
programs for which halting is decidable

- Use a programming language that lets a programmer 
specify hints (e.g., loop invariants) that can be 
compiled into a formal proof of halting
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