
BU CS 332 – Theory of Computation

Lecture 14:
• Undecidability
• Reductions

Reading:
Sipser Ch 4.2, 5.1

Mark Bun
March 20, 2024

https://forms.gle/miNx7n2WQrvEZXYf9

https://forms.gle/miNx7n2WQrvEZXYf9

Where we are and where we’re going

3/20/2024 CS332 - Theory of Computation 2

Church-Turing thesis: TMs capture all algorithms
Consequence: studying the limits of TMs reveals the limits
of computation

Last time: Countability, uncountability, and diagonalization

Today: Existential proof that there are undecidable and
unrecognizable languages

An explicit undecidable language
Reductions: Relate decidability / undecidability

of different problems

Last time: A general theorem about set sizes

Theorem: Let 𝑋𝑋 be any set. Then the power set 𝑃𝑃(𝑋𝑋) does
not have the same size as 𝑋𝑋.

Proof: Assume for the sake of contradiction that there is a
surjection 𝑓𝑓:𝑋𝑋 → 𝑃𝑃(𝑋𝑋)

Goal: Construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) that cannot be the output
𝑓𝑓(𝑥𝑥) for any 𝑥𝑥 ∈ 𝑋𝑋

3/20/2024 CS332 - Theory of Computation 3

Diagonalization argument
Assume a surjection 𝑓𝑓:𝑋𝑋 → 𝑃𝑃(𝑋𝑋)

3/20/2024 CS332 - Theory of Computation 4

𝑥𝑥 𝑥𝑥1 ∈ 𝑓𝑓(𝑥𝑥)? 𝑥𝑥2 ∈ 𝑓𝑓(𝑥𝑥)? 𝑥𝑥3 ∈ 𝑓𝑓(𝑥𝑥)? 𝑥𝑥4 ∈ 𝑓𝑓(𝑥𝑥)?

𝑥𝑥1 Y N Y Y
𝑥𝑥2 N N Y Y
𝑥𝑥3 Y Y Y N
𝑥𝑥4 N N Y N

…

…

Define 𝑆𝑆 by flipping the diagonal:
 Put 𝑥𝑥𝑖𝑖 ∈ 𝑆𝑆 ⟺ 𝑥𝑥𝑖𝑖 ∉ 𝑓𝑓(𝑥𝑥𝑖𝑖)

Last time: A general theorem about set sizes

Theorem: Let 𝑋𝑋 be any set. Then the power set 𝑃𝑃(𝑋𝑋) does
not have the same size as 𝑋𝑋.

Proof: Assume for the sake of contradiction that there is a
surjection 𝑓𝑓:𝑋𝑋 → 𝑃𝑃(𝑋𝑋)

Construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) that cannot be the output 𝑓𝑓(𝑥𝑥)
for any 𝑥𝑥 ∈ 𝑋𝑋:

𝑆𝑆 = 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥 ∉ 𝑓𝑓(𝑥𝑥)}
If 𝑆𝑆 = 𝑓𝑓(𝑦𝑦) for some 𝑦𝑦 ∈ 𝑋𝑋,

then 𝑦𝑦 ∈ 𝑆𝑆 if and only if 𝑦𝑦 ∉ 𝑆𝑆

3/20/2024 CS332 - Theory of Computation 5

Undecidable Languages

3/20/2024 CS332 - Theory of Computation 6

Undecidability / Unrecognizability
Definition: A language 𝐿𝐿 is undecidable if there is no TM
deciding 𝐿𝐿

Definition: A language 𝐿𝐿 is unrecognizable if there is no
TM recognizing 𝐿𝐿

3/20/2024 CS332 - Theory of Computation 7

An existential proof
Theorem: There exists an undecidable language over {0, 1}
Proof:

Set of all encodings of TM deciders: 𝑋𝑋 ⊆ {0, 1}∗

3/20/2024 CS332 - Theory of Computation 8

Set of all languages over {0, 1}:
a) 0, 1
b) 0, 1 ∗

c) 𝑃𝑃 0, 1 ∗ : The set of all subsets of 0, 1 ∗

d) 𝑃𝑃(𝑃𝑃 0, 1 ∗) : The set of all subsets of the set of all
 subsets of 0, 1 ∗

An existential proof
Theorem: There exists an undecidable language over {0, 1}
Proof:

Set of all encodings of TM deciders: 𝑋𝑋 ⊆ {0, 1}∗

3/20/2024 CS332 - Theory of Computation 9

Set of all languages over {0, 1}: 𝑃𝑃 0, 1 ∗

There are more languages than there are TM deciders!
 ⇒ There must be an undecidable language

An existential proof
Theorem: There exists an unrecognizable language over {0, 1}
Proof:

Set of all encodings of TMs: 𝑋𝑋 ⊆ {0, 1}∗

3/20/2024 CS332 - Theory of Computation 10

Set of all languages over {0, 1}: 𝑃𝑃 0, 1 ∗

There are more languages than there are TM recognizers!
 ⇒ There must be an unrecognizable language

“Almost all” languages are undecidable

But how do we actually find one?

3/20/2024 CS332 - Theory of Computation 11

An Explicit Undecidable
Language

3/20/2024 CS332 - Theory of Computation 12

Our power set size proof
Theorem: Let 𝑋𝑋 be any set. Then the power set 𝑃𝑃(𝑋𝑋) does
not have the same size as 𝑋𝑋.

1) Assume, for the sake of contradiction, that there is a
surjection 𝑓𝑓:𝑋𝑋 → 𝑃𝑃(𝑋𝑋)

2) “Flip the diagonal” to construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) such
that 𝑓𝑓 𝑥𝑥 ≠ 𝑆𝑆 for every 𝑥𝑥 ∈ 𝑋𝑋

3) Conclude that 𝑓𝑓 is not onto, a contradiction

3/20/2024 CS332 - Theory of Computation 13

Specializing the proof
Theorem: Let 𝑋𝑋 be the set of all TM deciders. Then there
exists an undecidable language in 𝑃𝑃 0, 1 ∗

1) Assume, for the sake of contradiction, that
𝐿𝐿:𝑋𝑋 → 𝑃𝑃(0, 1 ∗) is a surjection

2) “Flip the diagonal” to construct a language 𝑈𝑈𝑈𝑈 ∈
𝑃𝑃 0, 1 ∗ such that 𝐿𝐿 𝑀𝑀 ≠ 𝑈𝑈𝑈𝑈 for every 𝑀𝑀 ∈ 𝑋𝑋

3) Conclude that 𝐿𝐿 is not onto, a contradiction

3/20/2024 CS332 - Theory of Computation 14

An explicit undecidable language

3/20/2024 CS332 - Theory of Computation 15

TM 𝑀𝑀

𝑀𝑀1

𝑀𝑀2

𝑀𝑀3

𝑀𝑀4

…

Why is it possible to enumerate all TMs like this?

a) The set of all TMs is finite
b) The set of all TMs is countably infinite
c) The set of all TMs is uncountable

An explicit undecidable language

3/20/2024 CS332 - Theory of Computation 16

TM 𝑀𝑀 𝑀𝑀(𝑀𝑀1)? 𝑀𝑀(𝑀𝑀2)? 𝑀𝑀(𝑀𝑀3)? 𝑀𝑀(𝑀𝑀4)?

𝑀𝑀1 Y N Y Y

𝑀𝑀2 N N Y Y
𝑀𝑀3 Y Y Y N
𝑀𝑀4 N N Y N

…

…

𝑈𝑈𝑈𝑈 = 𝑀𝑀 𝑀𝑀 is a TM that does not accept on input 𝑀𝑀 }
Claim: 𝑈𝑈𝑈𝑈 is undecidable

𝑈𝑈(𝑈𝑈)?

𝑈𝑈

An explicit undecidable language
Theorem: 𝑈𝑈𝑈𝑈 = 𝑀𝑀 𝑀𝑀 is a TM that does not accept on

input 𝑀𝑀 } is undecidable
Proof: Suppose for contradiction that TM 𝑈𝑈 decides 𝑈𝑈𝑈𝑈

3/20/2024 CS332 - Theory of Computation 17

A more useful undecidable language
𝐴𝐴TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Theorem: 𝐴𝐴TM is undecidable
Proof: Assume for the sake of contradiction that TM 𝐻𝐻
decides 𝐴𝐴TM:

𝐻𝐻 𝑀𝑀,𝑤𝑤 = � accept if 𝑀𝑀 accepts 𝑤𝑤
reject if 𝑀𝑀 does not accept 𝑤𝑤

Idea: Show that 𝐻𝐻 can be used to construct a decider for
the (undecidable) language 𝑈𝑈𝑈𝑈 -- a contradiction.

3/20/2024 CS332 - Theory of Computation 18

A more useful undecidable language
𝐴𝐴TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Proof (continued):
Suppose, for contradiction, that 𝐻𝐻 decides 𝐴𝐴TM
Consider the following TM 𝑈𝑈:

“On input 𝑀𝑀 where 𝑀𝑀 is a TM:
1. Run 𝐻𝐻 on input 𝑀𝑀, 𝑀𝑀
2. If 𝐻𝐻 accepts, reject. If 𝐻𝐻 rejects, accept.”

Claim: 𝑈𝑈 decides 𝑈𝑈𝑈𝑈 = 𝑀𝑀 TM 𝑀𝑀 does not accept 𝑀𝑀 }

…but this language is undecidable!
3/20/2024 CS332 - Theory of Computation 19

Unrecognizable Languages
Theorem: A language 𝐿𝐿 is decidable if and only if 𝐿𝐿 and �𝐿𝐿
are both Turing-recognizable.
Corollary: 𝐴𝐴TM is unrecognizable

Proof of Theorem:

3/20/2024 CS332 - Theory of Computation 20

Unrecognizable Languages
Theorem: A language 𝐿𝐿 is decidable if and only if 𝐿𝐿 and �𝐿𝐿
are both Turing-recognizable.
Proof continued:

3/20/2024 CS332 - Theory of Computation 21

Classes of Languages

3/20/2024 CS332 - Theory of Computation 22

regular

recognizable

decidable

Reductions

3/20/2024 CS332 - Theory of Computation 23

Scientists vs. Engineers
A computer scientist and an engineer are stranded on a
desert island. They find two palm trees with one coconut
on each. The engineer climbs a tree, picks a coconut and
eats.

The computer scientist climbs the second tree, picks a
coconut, climbs down, climbs up the first tree and places
it there, declaring success.
“Now we’ve reduced the problem to one we’ve already
solved.” (Please laugh)

3/20/2024 CS332 - Theory of Computation 24

Reductions
A reduction from problem 𝐴𝐴 to problem 𝐵𝐵 is an algorithm
solving problem 𝐴𝐴 which uses an algorithm solving
problem 𝐵𝐵 as a subroutine

If such a reduction exists, we say “𝐴𝐴 reduces to 𝐵𝐵”

3/20/2024 CS332 - Theory of Computation 25

Reductions
A reduction from problem 𝐴𝐴 to problem 𝐵𝐵 is an algorithm
solving problem 𝐴𝐴 which uses an algorithm solving
problem 𝐵𝐵 as a subroutine
If such a reduction exists, we say “𝐴𝐴 reduces to 𝐵𝐵”

If 𝐴𝐴 reduces to 𝐵𝐵, and 𝐵𝐵 is decidable, what can we say
about 𝐴𝐴?
a) 𝐴𝐴 is decidable
b) 𝐴𝐴 is undecidable
c) 𝐴𝐴 might be either decidable or undecidable

3/20/2024 CS332 - Theory of Computation 26

Two uses of reductions
Positive uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝐴𝐴
is also decidable

3/20/2024 CS332 - Theory of Computation 27

𝐸𝐸𝑄𝑄DFA = ⟨𝑈𝑈1,𝑈𝑈2⟩ 𝑈𝑈1,𝑈𝑈2 are DFAs and 𝐿𝐿(𝑈𝑈1) = 𝐿𝐿(𝑈𝑈2)}
Theorem: 𝐸𝐸𝑄𝑄DFA is decidable
Proof: The following TM decides 𝐸𝐸𝑄𝑄DFA

On input ⟨𝑈𝑈1,𝑈𝑈2⟩ , where 𝑈𝑈1,𝑈𝑈2 are DFAs:
1. Construct a DFA 𝑈𝑈 that recognizes the symmetric

difference 𝐿𝐿(𝑈𝑈1) △ 𝐿𝐿(𝑈𝑈2)
2. Run the decider for 𝐸𝐸DFA on 𝑈𝑈 and return its output

Two uses of reductions
Negative uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐴𝐴 is undecidable,
then 𝐵𝐵 is also undecidable

3/20/2024 CS332 - Theory of Computation 28

𝐴𝐴TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Suppose 𝐻𝐻 decides 𝐴𝐴TM

Consider the following TM 𝑈𝑈.
On input 𝑀𝑀 where 𝑀𝑀 is a TM:
1. Run 𝐻𝐻 on input 𝑀𝑀, 𝑀𝑀
2. If 𝐻𝐻 accepts, reject. If 𝐻𝐻 rejects, accept.

Claim: 𝑈𝑈 decides
𝑈𝑈𝑈𝑈 = 𝑀𝑀 𝑀𝑀 is a TM that does not accept input 𝑀𝑀 }

Two uses of reductions
Negative uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐴𝐴 is undecidable,
then 𝐵𝐵 is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that 𝐵𝐵 is decidable
2. Using a decider for 𝐵𝐵 as a subroutine, construct an

algorithm deciding 𝐴𝐴
3. But 𝐴𝐴 is undecidable. Contradiction!

3/20/2024 CS332 - Theory of Computation 29

Halting Problem
Computational problem: Given a program (TM) and input 𝑤𝑤,
does that program halt (either accept or reject) on input 𝑤𝑤?
Formulation as a language:

𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Ex. 𝑀𝑀 = “On input 𝑥𝑥 (a natural number written in binary):
For each 𝑦𝑦 = 1, 2, 3, … :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.”

Is 𝑀𝑀, 101 ∈ 𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM?
a) Yes, because 𝑀𝑀 accepts on input 101
b) Yes, because 𝑀𝑀 rejects on input 101
c) No, because 𝑀𝑀 rejects on input 101
d) No, because 𝑀𝑀 loops on input 101

3/20/2024 CS332 - Theory of Computation 30

Halting Problem
Computational problem: Given a program (TM) and input 𝑤𝑤,
does that program halt (either accept or reject) on input 𝑤𝑤?
Formulation as a language:

𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Ex. 𝑀𝑀 = “On input 𝑥𝑥 (a natural number in binary):
For each 𝑦𝑦 = 1, 2, 3, … :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.”

𝑀𝑀′ = “On input 𝑥𝑥 (a natural number in binary):
For each 𝑦𝑦 = 1, 2, 3, … , 𝑥𝑥 :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.
Reject.”

3/20/2024 CS332 - Theory of Computation 31

Halting Problem
𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Theorem: 𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝐻𝐻
for 𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM. We construct a decider for 𝑉𝑉 for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝐻𝐻 on input 𝑀𝑀,𝑤𝑤
2. If 𝐻𝐻 rejects, reject
3. If 𝐻𝐻 accepts, run 𝑀𝑀 on 𝑤𝑤
4. If 𝑀𝑀 accepts, accept

Otherwise, reject.

This is a reduction from 𝐴𝐴TM to 𝐻𝐻𝐴𝐴𝐿𝐿𝐻𝐻TM
3/20/2024 CS332 - Theory of Computation 32

Halting Problem
Computational problem: Given a program (TM) and input
𝑤𝑤, does that program halt on input 𝑤𝑤?
• A central problem in formal verification
• Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances,
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of
programs for which halting is decidable

- Use a programming language that lets a programmer
specify hints (e.g., loop invariants) that can be
compiled into a formal proof of halting

3/20/2024 CS332 - Theory of Computation 33

	BU CS 332 – Theory of Computation
	Where we are and where we’re going
	Last time: A general theorem about set sizes
	Diagonalization argument
	Last time: A general theorem about set sizes
	Undecidable Languages
	Undecidability / Unrecognizability
	An existential proof
	An existential proof
	An existential proof
	“Almost all” languages are undecidable
	An Explicit Undecidable Language
	Our power set size proof
	Specializing the proof
	An explicit undecidable language
	An explicit undecidable language
	An explicit undecidable language
	A more useful undecidable language
	A more useful undecidable language
	Unrecognizable Languages
	Unrecognizable Languages
	Classes of Languages
	Reductions
	Scientists vs. Engineers
	Reductions
	Reductions
	Two uses of reductions
	Two uses of reductions
	Two uses of reductions
	Halting Problem
	Halting Problem
	Halting Problem
	Halting Problem

