BU CS 332 —Theory of Computation

https://forms.gle/DF9EwW4AyisH3Dy419

Lecture 15: Reading:
» More on Reductions Sipser Ch 5.1

AV dscussean sec jroag
u}c\\ vdN -|-omom\.)
Mark Bun
March 25, 2024

Reductions

3/25/2024 CS332 - Theory of Computation

Reductions

A reduction from problem A to problem B is an algorithm
solving problem A which uses an algorithm solving
problem B as a subroutine

If such a reduction exists, we say “A reduces to B”

(| Ma. saaq A
i O . W /
Dy W, - oy
—5| Me. cdiy & 7=
_“‘1.3 ’ i.‘%"‘ml-
| :j—ﬁdm#hmﬂ

3/25/2024 CS332 - Theory of Computation 3

Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A
Is also decidable ,

EQDFA — {(Dl, D2> |D1, DZ dare DFAS and L(Dl) — L(Dz)}
Theorem: EQpr, is decidable

Proof: The following TM decides EQppa
Eoct "§<07| L(0) = 7{3

On input (D, D,), where (D, D5} are DFAs:

1. Construct a DFA D that recbgnizes the symmetric
difference L(D;) A L(D-)

2. Run the decider for Epga on (D) and return its output

3/25/2024 CS332 - Theory of Computation 4

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Aty = {{M,w) | M is a TM that accepts input w}

Suppose H decides Ay Wasw™ U undecdble
U edbita, fon U0 Yo Aan
Consider the following TM D. (orlud’ Apn also dadrddable

On input (M) where M is a TM:
1. Run H oninput (M, (M))
2. If H accepts, reject. If H rejects, accept.

Claim: If H decides Aty then D decides
UD = {{M) | M is a TM that does not accept input (M)}

3/25/2024 CS332 - Theory of Computation 5

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that B is decidable

2. Using a decider for B as a subroutine, construct an
algorithm deciding A

3. But A is undecidable. Contradiction!

Halting Problem

Computational problem: Given a program (TM; and input w,
does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTry = {{M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number written in binary):
Foreachy = 1,2,3,...:
oy w&*ﬂo-"lfyz = X, accept. Else, continue.”

Py S ol 4(.(#\\ M loofs feerer on
Is(M,101) € HALT\? _ °l
a) Yes, because M accepts on input 101 :
b) Yes, because M rejects on input 101

c) No, because M rejects on input 101
[d)) No, because M loops on input 101

3/25/2024 CS332 - Theory of Computation

Halting Problem

Computational problem: Given a program (TIVI; and input w,
does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTry = {{M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number in binary):
Foreachy = 1,2,3, ...:
If y2 = x, accept. Else, continue.”

M 100) ¢ Hiuig,

M’ = “On input x (a natural number in binary): 4w o1 & HALT,,
Foreachy =1,2,3,...,x
If y2 = x, accept. Else, continue.
Reject.”

' «

W lﬂ£7 € HA LTim

3/25/2024 CS332 - Theory of Computation 8

Halting Problem
HALTry = {{M,w) |M is a TM that halts on input w}

Theorem: HALTTy is undecidable

Proof: Suppose for contradiction that there exists a decider H
for HALTTy\. We construct a decider for V for Aty as follows:

On input (M, w):
1.

2.
3.
A

Run H on input (M, w)
f H rejects, reject

f M accepts, accept
Otherwise, reject.

(™

1

f H accepts, run M onw [

Pegouss M) Yo dlemie Llste
M Wk o

Cin ¥ M ik on I, an
wsk wn M v W ed kke

Qay

This is a reduction from Aty to HALT 1y

3/25/2024 CS332 - Theory of Computation

Halting Problem
HALTry = {{M,w) |M is a TM that halts on input w}

Theorem: HALTTy is undecidable

Proof: Suppose for contradiction that there exists a decider H
for HALTtp. We construct a decider for IV for Aty as follows:

Clam J«'\.’ A c\uhs HAL\ en
On input (M, w): "'—'\/ acles fom.
1. RunHoninput (M, w) |air. <ma7 € A =2 M oers
: : ToTa st t, M acglh cie M lalhan o
2. If H rejects, reject 160 on b P D, Wt M adeh o
3. If Haccepts,runMonw | *V amh °*"A:‘n
4. If M accepts, accept Cuez: <M 'm*\, h Q
SaVauG a- M repec o M ket
. : e 1. o\, A ac Mee o
Otherwise, reject. : t‘»{:’ s the T e M e
V resecty, ovemil.

Su\xqsc lo- M Logs 8a W)
ar> A B webadave, Ah %LT*M 7 TN Hm:k ciaelio> AL Ty
ﬁ
2) 09 ashupienn 3:;\ 3% This'is a reductlons?rom Ay to HALTTM
3/25/2024 wao =) HA"T“V\ “‘&ES Z\éheoryofComputatlon

Halting Problem

Computational problem: Given a program (TM) and input
w, does that program halt on input w?

* A central problem in formal verification

* Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances,
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of
programs for which halting is decidable

- Use a programming language that lets a programmer
specify hints (e.g., loop invariants) that can be
compiled into a formal proof of halting

Coﬂﬂ\"\““‘\ deoview - Goen eu.o&g

Emptiness testing for TMs & a ™ M, dloaie ter
M Ragmies 4(& entd) lryugl

Erpm = {(M) [MisaTM and L(M) = ¢}
Theorem: ET)p is undecidable

Proof: Suppose for contradiction that there exists a decider R
for Epy. We construct a decider V for Aty as follows: N

On input@:

1. Run R oninput ???

flun L on et L) TE @ reveded <M.
Doa't Las
T Madgh w, Hw VELM), o (M7
* U SR et <) .c}i—— Maob 3 O wt!

{—s’ ll\ & wot al(* W
M wawt recognde # = X acgt o)
or M acph gore Wy) 3) L aseds L) |/—

This is a reduction from Appy to Eum

3/25/2024 CS332 - Theory of Computation 12

Emptiness testing for TMs :
Etpm = {{M) |MisaTM and L(M) = @}
Theorem: ETp is undecidable

Proof: Suppose for contradiction thatrPere exists a decider R
for ETp. We construct a decider V fo A@s follows:

On input (M, w):

What do we want out of

1. Constructa TM N as follows: ”;aczi(”ﬁ)’\.’? R
a is empty i
L(N) $¢ accepts w
& (L pesech <D L(N) is non-empty iff M

7N aghy LMD) (é7 W acyh w) accepts w.

c) L(M)isemptyiff N

, accepts w

2.Run R on Input <N> d) L(M) is non-empty iff N

3.1f R wyeks | accept. Otherwise, reject accepts w

This is a reduction from App to E1y

3/25/2024 CS332 - Theory of Computation 13

. j? M aﬁh b-))

Emptiness testing for TMs tea A <,

i - T M o not- acwl W
\ETM = {(M)|MisaTMand L(M) = @} to~ N dees ot

. . ale Pt dugthoy
Theorem: ETp is undecidable

Proof: Suppose for contradiction that there exists a decider R
for Ety. We construct a decider V for Aty as follows: —

On input (M, w): Placcloler vetchie for Clam ux) *?: -
)) M 4 acph »
1. \Construct a T N as follows: foof -
“A\ ' //—: DM ayh -
On mpqt X1 Tqeeny L g e | W et o
_ Run M on w and output the result.” =5'r 44
2. Run R on input@j 2) M dees ot a@gF o
3. If R rejects, accept. Otherwise, reject L(N)__: ;’-‘l M a5
T Ewm docde, Hn Aw dadvie

Bl A andedane %< This is a reduction from A7y ‘
= Em undet davie - — w0 E;@

3/25/2024 CS332 - Theory of Computation
\

Interlude: Formalizing Reductions
(Sipser 6.3)

Informally: A reduces to B if a decider for B can be used
to construct a decider for A

One way to formalize:

* An oracle for language B is a device that can answer
questions “Isw € B?”

* An oracle TM M?% is a TM that can query an oracle for B
in one computational step

A is Turing-reducible to B (written A <+ B) if thereis an
oracle TM M® deciding A

3/25/2024 CS332 - Theory of Computation 15

fecal: W doed EO-o¢k n

Fquality Testing for TMs /“';%";A et

EQrm = {{My, M3) |My, M, are TMs and L(M;) = L(M,)}
Theorem: EQy is undecidable Cm=CM7| M0 oa ™, Lm: 3

Proof: Suppose for contradiction that there exists a decider R
for EQ1y. We construct a decider for E1y as follows:

—

On input (M): ’
1. Construct TMs N4, N, as follows:
N, = N, =

2. Run R on input (N¢, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from &y to £Qmy
v 16

3/25/2024 CS332 - Theory of Computation

Equality Testing for TMs

What do we want out of the machines Ny, N,?
a) L(M) = @ iff Ny =N, [b\L(M) = @iff L(N,) = L(N,)

c) L(M) = @iff Ny # N, d) L(M) = @iff L(N;) # L(N,)
ral. N MY € E0m & LIN) LN =5 UM &2 M7€Em

On input (M):
1. Construct TMs N4, N, as follows:
N1 - NZ =

e LN = ¢ L(N)= (M)

2. Run R oninput (N, N,)
3. If R accepts, accept. Otherwise, reject.
This is a reduction from Etp to EQ1m

3/25/2024 CS332 - Theory of Computation 17

Equality Testing for TMs

EQrm = {{My, M;) |[M;, M, are TMs and L(M,) = L(M,)}

Theorem: EQTy is undecidable

Proof: Suppose for contradiction that there exists a decider R
for EQ1y. We construct a decider for Aty as follows:

On input (M): | ™M v Poalysts
1. Construct TMs N4, N, as follows: Clan Vé‘ﬁ’é?m
N; = “Oninput x: N, =M LM7€ B £
reject”) = &

2. Run R on input (N¢, N,)
3. If R accepts, accept. Otherwise, reject.

LN (= P) = Lom)
= UW,)

£=> (N, Neoe EQnn
£ (L «wob

B \V acob .

This is a reduction from Egp to EQmp

3/25/2024 CS332 - Theory of Computation

18

Regular [anguage testing for TMs

REGty = {{M) |M isaTM and L(M) is regular}
Theorem: RE Gy is undecidable

Proof: Suppose for contradiction that there exists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:
Eoa): (ashud N sacn Yt
M aegh 0 =D LW i regala”

M 405 vk et 0 =) LINY D vnregular

2. Run R on input (N)
3. If R accepts, accept. Otherwise, reject

This is a reduction from Aty to REGty

3/25/2024 CS332 - Theory of Computation 19

Regular [anguage testing for TMs

REGty = {{M) |M isaTM and L(M) is regular}
Theorem: RE Gy is undecidable

Proof: Suppose for contradiction that there exists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w): Andibsic”
1. Constructa TM N as follows: e N acfts W =
“On i LAY = 0,03 (rydr)
N =“On input x, D actn
L.Ifx € {0"1" | n = 0}, accept, —-—— o
2. Run TM M on input w IR Lise.
3. If M accepts, accept. Otherwise, reject.”
2. Run R on input (N) = cdar ot w0t

3. If R accepts, accept. Otherwise, reject

This is a reduction from Aty to REGty

3/25/2024 CS332 - Theory of Computation 20

