
BU CS 332 – Theory of Computation

Lecture 15:
• More on Reductions

Reading:
Sipser Ch 5.1

Mark Bun
March 25, 2024

https://forms.gle/DF9Ew4AyisH3Dy419

Reductions

3/25/2024 CS332 - Theory of Computation 2

Reductions
A reduction from problem to problem is an algorithm
solving problem which uses an algorithm solving
problem as a subroutine

If such a reduction exists, we say “ reduces to ”

3/25/2024 CS332 - Theory of Computation 3

Two uses of reductions
Positive uses: If reduces to and is decidable, then
is also decidable

3/25/2024 CS332 - Theory of Computation 4

ୈ୊୅ ଵ ଶ ଵ ଶ ଵ ଶ

Theorem: ୈ୊୅ is decidable
Proof: The following TM decides ୈ୊୅

On input ଵ ଶ , where ଵ ଶ are DFAs:
1. Construct a DFA that recognizes the symmetric

difference ଵ ଶ

2. Run the decider for ୈ୊୅ on and return its output

Two uses of reductions
Negative uses: If reduces to and is undecidable,
then is also undecidable

3/25/2024 CS332 - Theory of Computation 5

୘୑
Suppose decides ୘୑

Consider the following TM .
On input where is a TM:
1. Run on input
2. If accepts, reject. If rejects, accept.

Claim: If decides ୘୑ then decides

Two uses of reductions
Negative uses: If reduces to and is undecidable,
then is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that is decidable
2. Using a decider for as a subroutine, construct an

algorithm deciding
3. But is undecidable. Contradiction!

3/25/2024 CS332 - Theory of Computation 6

Halting Problem
Computational problem: Given a program (TM) and input ,
does that program halt (either accept or reject) on input ?
Formulation as a language:

୘୑

Ex. = “On input (a natural number written in binary):
For each :

If ଶ , accept. Else, continue.”

Is ୘୑
a) Yes, because accepts on input
b) Yes, because rejects on input
c) No, because rejects on input
d) No, because loops on input

3/25/2024 CS332 - Theory of Computation 7

Halting Problem
Computational problem: Given a program (TM) and input ,
does that program halt (either accept or reject) on input ?
Formulation as a language:

୘୑

Ex. = “On input (a natural number in binary):
For each :

If ଶ , accept. Else, continue.”

= “On input (a natural number in binary):
For each :

If ଶ , accept. Else, continue.
Reject.”

3/25/2024 CS332 - Theory of Computation 8

Halting Problem
୘୑

Theorem: ୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider
for ୘୑. We construct a decider for for ୘୑ as follows:
On input :
1. Run on input
2. If rejects, reject
3. If accepts, run on
4. If accepts, accept

Otherwise, reject.

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 9

Halting Problem
୘୑

Theorem: ୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider
for ୘୑. We construct a decider for for ୘୑ as follows:
On input :
1. Run on input
2. If rejects, reject
3. If accepts, run on
4. If accepts, accept

Otherwise, reject.

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 10

Halting Problem
Computational problem: Given a program (TM) and input

, does that program halt on input ?
• A central problem in formal verification
• Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances,
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of
programs for which halting is decidable

- Use a programming language that lets a programmer
specify hints (e.g., loop invariants) that can be
compiled into a formal proof of halting

3/25/2024 CS332 - Theory of Computation 11

Emptiness testing for TMs

୘୑

Theorem: ୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider
for ୘୑. We construct a decider for ୘୑ as follows:
On input :
1. Run on input ???

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 12

Emptiness testing for TMs

୘୑
Theorem: ୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider
for ୘୑. We construct a decider for ୘୑ as follows:
On input :
1. Construct a TM as follows:

2. Run on input
3. If , accept. Otherwise, reject

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 13

What do we want out of
machine 𝑁?
a) 𝐿ሺ𝑁ሻ is empty iff 𝑀

accepts 𝑤
b) 𝐿ሺ𝑁ሻ is non-empty iff 𝑀

accepts 𝑤
c) 𝐿ሺ𝑀ሻ is empty iff 𝑁

accepts 𝑤
d) 𝐿 𝑀 is non-empty iff 𝑁

accepts 𝑤

Emptiness testing for TMs

୘୑
Theorem: ୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider
for ୘୑. We construct a decider for ୘୑ as follows:
On input :
1. Construct a TM as follows:

“On input
Run on and output the result.”

2. Run on input
3. If rejects, accept. Otherwise, reject

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 14

Interlude: Formalizing Reductions
(Sipser 6.3)

Informally: reduces to if a decider for can be used
to construct a decider for
One way to formalize:
• An oracle for language is a device that can answer

questions “Is ?”
• An oracle TM ஻ is a TM that can query an oracle for

in one computational step

is Turing-reducible to (written ்) if there is an
oracle TM ஻ deciding

3/25/2024 CS332 - Theory of Computation 15

Equality Testing for TMs

୘୑ ଵ ଶ ଵ ଶ ଵ ଶ
Theorem: ୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider
for ୘୑. We construct a decider for ୘୑ as follows:
On input :
1. Construct TMs ଵ, ଶ as follows:

ଵ = ଶ =

2. Run on input ଵ ଶ
3. If accepts, accept. Otherwise, reject.

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 16

Equality Testing for TMs
What do we want out of the machines ଵ ଶ?
a) iff ଵ ଶ b) iff ଵ ଶ
c) iff ଵ ଶ d) iff ଵ ଶ

On input :
1. Construct TMs ଵ, ଶ as follows:

ଵ = ଶ =

2. Run on input ଵ ଶ
3. If accepts, accept. Otherwise, reject.

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 17

Equality Testing for TMs

୘୑ ଵ ଶ ଵ ଶ ଵ ଶ
Theorem: ୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider
for ୘୑. We construct a decider for ୘୑ as follows:
On input :
1. Construct TMs ଵ, ଶ as follows:

ଵ = “On input : ଶ =
reject”

2. Run on input ଵ ଶ
3. If accepts, accept. Otherwise, reject.

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 18

Regular language testing for TMs

୘୑
Theorem: ୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider
for ୘୑. We construct a decider for ୘୑ as follows:
On input :
1. Construct a TM as follows:

2. Run on input
3. If accepts, accept. Otherwise, reject

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 19

Regular language testing for TMs

୘୑
Theorem: ୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider
for ୘୑. We construct a decider for ୘୑ as follows:
On input :
1. Construct a TM as follows:

= “On input ,
1. If ௡ ௡ accept
2. Run TM on input
3. If accepts, accept. Otherwise, reject.”

2. Run on input
3. If accepts, accept. Otherwise, reject

This is a reduction from ୘୑ to ୘୑
3/25/2024 CS332 - Theory of Computation 20

