BU CS 332 – Theory of Computation

<https://forms.gle/DF9Ew4AyisH3Dy419>

Lecture 16:

• More on Reductions

Reading: Sipser Ch 5.1

Mark Bun March 25, 2024

Reductions

Reductions

A reduction from problem A to problem B is an algorithm solving problem A which uses an algorithm solving problem B as a subroutine

If such a reduction exists, we say "A reduces to B "

Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

 $EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$ Theorem: EQ_{DFA} is decidable Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \triangle L(D_2)$
- 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Suppose H decides A_{TM}

Consider the following TM D.

On input $\langle M \rangle$ where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. If H accepts, reject. If H rejects, accept.

Claim: If H decides A_{TM} then D decides $UD = \{ \langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}$

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:

- 1. Suppose to the contrary that B is decidable
- 2. Using a decider for B as a subroutine, construct an algorithm deciding \ddot{A}
- 3. But A is undecidable. Contradiction!

Computational problem: Given a program (TM) and input W , does that program halt (either accept or reject) on input w ? Formulation as a language:

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}$

Ex. $M =$ "On input x (a natural number written in binary): For each $y = 1, 2, 3, ...$: If $y^2 = x$, accept. Else, continue."

Is $\langle M, 101 \rangle \in HALT_{TM}$?

- a) Yes, because M accepts on input 101
- b) Yes, because M rejects on input 101
- c) No, because M rejects on input 101
- d) No, because M loops on input 101
 $\frac{3}{25}/2024$ **CS332 - Theory of Computation 7**

Computational problem: Given a program (TM) and input W , does that program halt (either accept or reject) on input w ? Formulation as a language:

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}$

Ex. $M = "On input x$ (a natural number in binary): For each $y = 1, 2, 3, ...$: If $y^2 = x$, accept. Else, continue."

 M' = "On input x (a natural number in binary): For each $y = 1, 2, 3, ..., x$: If $y^2 = x$, accept. Else, continue. Reject."

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}$

Theorem: $HALT_{TM}$ is undecidable

Proof: Suppose for contradiction that there exists a decider H for $HALT_{TM}$. We construct a decider for V for A_{TM} as follows:

On input $\langle M, w \rangle$:

- 1. Run H on input $\langle M, w \rangle$
- 2. If H rejects, reject
- 3. If H accepts, run M on W
- 4. If M accepts, accept Otherwise, reject.

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}$

Theorem: $HALT_{TM}$ is undecidable

Proof: Suppose for contradiction that there exists a decider H for $HALT_{TM}$. We construct a decider for V for A_{TM} as follows:

On input $\langle M, w \rangle$:

- 1. Run H on input $\langle M, w \rangle$
- 2. If H rejects, reject
- 3. If H accepts, run M on W
- 4. If M accepts, accept Otherwise, reject.

Computational problem: Given a program (TM) and input w , does that program halt on input w ?

- A central problem in formal verification
- Dealing with undecidability in practice:
	- Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
	- Restrict to a "non-Turing-complete" subclass of programs for which halting is decidable
	- Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting

Emptiness testing for TMs

$$
E_{\text{TM}} = \{ \langle M \rangle \, | M \text{ is a TM and } L(M) = \emptyset \}
$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider *V* for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Run R on input ???

This is a reduction from A_{TM} to E_{TM}

Emptiness testing for TMs

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider V for A_{TM} as follows:

On input $\langle M, w \rangle$:

2. Run R on input $\langle N \rangle$

1. Construct a TM N as follows:

3. If R , accept. Otherwise, reject

What do we want out of machine $N²$

- a) $L(N)$ is empty iff M accepts w
- b) $L(N)$ is non-empty iff M accepts w
- c) $L(M)$ is empty iff N accepts w
- d) $L(M)$ is non-empty iff N accepts w

This is a reduction from A_{TM} to E_{TM}

Emptiness testing for TMs

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider V for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Construct a TM N as follows:

"On input x :

Run M on W and output the result."

2. Run R on input $\langle N \rangle$

3. If R rejects, accept. Otherwise, reject

This is a reduction from A_{TM} to E_{TM}

Interlude: Formalizing Reductions (Sipser 6.3)

Informally: A reduces to B if a decider for B can be used to construct a decider for A

One way to formalize:

- \bullet An *oracle* for language B is a device that can answer questions "Is $w \in B$?"
- An *oracle TM* M^B is a TM that can query an oracle for B in one computational step

A is Turing-reducible to B (written $A \leq_T B$) if there is an oracle TM M^B deciding A

Equality Testing for TMs

 $EQ_{TM} = \{ (M_1, M_2) | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for E_{TM} as follows:

On input $\langle M \rangle$:

1. Construct TMs N_1 , N_2 as follows: $N_1 = N_2 =$

2. Run R on input $\langle N_1, N_2 \rangle$ 3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}

Equality Testing for TMs

What do we want out of the machines N_1 , N_2 ? a) $L(M) = \emptyset$ iff $N_1 = N_2$ b) $L(M) = \emptyset$ iff $L(N_1) = L(N_2)$ c) $L(M) = \emptyset$ iff $N_1 \neq N_2$ d) $L(M) = \emptyset$ iff $L(N_1) \neq L(N_2)$

On input $\langle M \rangle$:

1. Construct TMs N_1 , N_2 as follows: $N_1 = N_2 =$

2. Run R on input $\langle N_1, N_2 \rangle$ 3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}

Equality Testing for TMs

 $EQ_{TM} = \{ (M_1, M_2) | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M \rangle$:

- 1. Construct TMs N_1 , N_2 as follows:
 $N_1 =$ "On input x: $N_2 = M$
	- N_1 = "On input x: reject"

2. Run R on input $\langle N_1, N_2 \rangle$ 3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}

Regular language testing for TMs

 $REG_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: REG_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for REG_{TM} . We construct a decider for A_{TM} as follows:

On input (M, w) :

Construct a TM N as follows:

2. Run R on input $\langle N \rangle$

3. If R accepts, accept. Otherwise, reject

This is a reduction from A_{TM} to REG_{TM}

Regular language testing for TMs

 $REG_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: REG_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for REG_{TM} . We construct a decider for A_{TM} as follows:

On input (M, w) :

1. Construct a TM N as follows:

 $N =$ "On input x ,

1. If $x \in \{0^n 1^n \mid n \ge 0\}$, accept

2. Run TM M on input W

3. If *M* accepts, accept. Otherwise, reject."

2. Run R on input $\langle N \rangle$

3. If R accepts, accept. Otherwise, reject

This is a reduction from A_{TM} to REG_{TM}

Other undecidable problems

Problems in Language Theory

Apparent dichotomy:

- TMs seem to be able to solve problems about the power of weaker computational models (e.g., DFAs)
- TMs can't solve problems about the power of TMs themselves

Question: Are there undecidable problems that do not involve TM descriptions?

Undecidability of mathematics [Sipser 6.2] Peano arithmetic: Formalization of mathematical statements about the natural numbers, using $+, \times, \leq$

Ex: "There exist infinitely many primes"

Theorem [Church, Turing]:

TPA = $\{\langle \varphi \rangle | \varphi$ is a true statement in PA } is undecidable

Proof skeleton:

Gödel's First Incompleteness Theorem [Sipser 6.2]

Theorem: There exists a true statement φ in Peano arithmetic that is not provable

Proof idea:

Suppose for contradiction that every true statement is provable. Then $TPA = PPA$ where

PPA = $\{\langle \varphi \rangle | \varphi$ is a *provable* statement in PA $\}$

Claim: PPA is Turing-recognizable

Construct a decider for TPA as follows:

A simple undecidable problem Post Correspondence Problem (PCP) [Sipser 5.2]: Domino: $\left\lfloor \frac{a}{ab} \right\rfloor$. Top and bottom are strings. Input: Collection of dominos. $\left[\frac{aa}{aba}\right], \left|\frac{ab}{aba}\right|, \left|\frac{ba}{aa}\right|, \left|\frac{abab}{b}\right|$

Match: List of some of the input dominos (repetitions allowed) where top = bottom

$$
\left[\frac{ab}{aba}\right], \left[\frac{aa}{aba}\right], \left[\frac{ba}{aa}\right], \left[\frac{aa}{aba}\right], \left[\frac{abab}{b}\right]
$$

Problem: Does a match exist? This is undecidable

3/25/2024 CS332 - Theory of Computation 25

Computation History Method

A sequence of configurations C_0 , ..., C_{ℓ} is an accepting computation history for TM M on input W if

- 1. C_0 is the start configuration $q_0w_1 ... w_n$
- 2. Every C_{i+1} legally follows from C_i
- 3. C_{ℓ} is an accepting configuration

Reduction from the undecidable language A_{TM} to a language L using the following idea:

Given an input $\langle M, w \rangle$ to A_{TM} , the ability to solve L enables checking whether there exists an accepting computation history for M on W