BU CS 332 – Theory of Computation

<https://forms.gle/dNF9ECAsFxeJ48dp8>

Lecture 17:

• Mapping Reductions

Reading: Sipser Ch 5.3

Mark Bun

April 3, 2024

Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B "

Positive uses: If A reduces to B and B is decidable, then A is also decidable

Ex. E_{DFA} is decidable \Rightarrow EQ_{DFA} is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Ex. E_{TM} is undecidable $\Rightarrow EQ_{TM}$ is undecidable

What's wrong with the following "proof"?

Bogus "Theorem": A_{TM} is not Turing-recognizable

Bogus "Proof": Let R be an alleged recognizer for A_{TM} . We construct a recognizer S for unrecognizable language A_{TM} :

On input $\langle M, w \rangle$:

- 1. Run R on input $\langle M, w \rangle$
- 2. If R accepts, reject. If R rejects, accept.

This sure looks like a reduction from A_{TM} to A_{TM}

Mapping Reductions: Motivation

- 1. How do we formalize the notion of a reduction?
- 2. How do we use reductions to show that languages are unrecognizable?
- 3. How do we protect ourselves from accidentally "proving" bogus statements about recognizability?

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape. ("Outputs $f(w)$ ")

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape. ("Outputs $f(w)$ ")

Example 1: $f(w) = sort(w)$

Example 2:
$$
f(\langle x, y \rangle) = x + y
$$

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape. ("Outputs $f(w)$ ")

Example 3: $f(\langle M, w \rangle) = \langle M' \rangle$ where M is a TM, w is a string, and M' is a TM that ignores its input and simulates running M on W

Mapping Reductions Definition:

Let $A, B \subseteq \Sigma^*$ be languages. We say A is mapping reducible to B , written

$$
A \leq_{\mathsf{m}} B
$$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \Longleftrightarrow f(w) \in B$

Mapping Reductions

Definition:

Language A is mapping reducible to language B , written $A \leq_m B$ if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for

all strings $w \in \Sigma^*$, we have $w \in A \Longleftrightarrow f(w) \in B$

If $A \leq_m B$, which of the following is true? a) $\overline{A} \leq_m B$ b) $A \leq_m B$ c) $\overline{A} \leq_m \overline{B}$ d) $\overline{B} \leq_m \overline{A}$

Decidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Proof: Let M be a decider for B and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from A to B . We can construct a decider N for A as follows:

On input w :

- 1. Compute $f(w)$
- 2. Run *M* on input $f(w)$
- 3. If M accepts, accept. If it rejects, reject.

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable

Old Proof: Equality Testing for TMs

 $EQ_{TM} = \{ (M_1, M_2) | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EO_{TM} . We construct a decider for E_{TM} as follows:

On input $\langle M \rangle$:

Construct TMs M_1 , M_2 as follows:

$$
M_1 = M
$$
 $M_2 =$ "On input x,
1. Ignore x and reject"

2. Run R on input $\langle M_1, M_2 \rangle$

3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}

New Proof: Equality Testing for TMs

 $EQ_{TM} = \{ (M_1, M_2) | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: $E_{TM} \leq_m EQ_{TM}$ (Hence EQ_{TM} is undecidable) Proof: The following TM N computes the reduction f :

On input $\langle M \rangle$: 1. Construct TMs M_1 , M_2 as follows: $M_1 = M$ $M_2 =$ "On input x, 1. Ignore x and reject"

2. Output $\langle M_1, M_2 \rangle$

Mapping Reductions: Recognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Proof: Let M be a recognizer for B and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from A to B . Construct a recognizer N for A as follows:

On input w :

- 1. Compute $f(w)$
- 2. Run *M* on input $f(w)$
- 3. If M accepts, accept.
	- If it rejects, reject.

Unrecognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is also unrecognizable

Corollary: If $A_{TM} \leq_m B$, then B is unrecognizable

Let L be a language. Which of the following is true?

a) If $L \leq_m A_{TM}$, then L is recognizable b) If $A_{TM} \leq_m L$, then L is recognizable c) If L is recognizable, then $L \leq_m A_{TM}$ d) If L is recognizable, then $A_{\text{TM}} \leq_m L$

Theorem: L is recognizable *if and only* if $L \leq_m A_{TM}$

Recognizability and A_{TM}

Theorem: L is recognizable *if and only if* $L \leq_m A_{TM}$ Proof:

Example: Another reduction to EQ_{TM} $EQ_{TM} = \{ (M_1, M_2) | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$ Proof: The following TM N computes the reduction f :

What should the inputs and outputs to f be?

- a) f should take as input a pair $\langle M_1, M_2 \rangle$ and output a pair $\langle M, w \rangle$
- b) f should take as input a pair $\langle M, w \rangle$ and output a pair $\langle M_1, M_2 \rangle$
- c) f should take as input a pair $\langle M_1, M_2 \rangle$ and either accept or reject
- d) f should take as input a pair $\langle M, w \rangle$ and either accept or reject

Example: Another reduction to EQ_{TM} $EQ_{TM} = \{ (M_1, M_2) | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$ Proof: The following TM computes the reduction f :

On input $\langle M, w \rangle$:

1. Construct TMs M_1 , M_2 as follows: M_1 = "On input x, M_2 = "On input x,

2. Output $\langle M_1, M_2 \rangle$

Consequences of $A_{\text{TM}} \leq_m EQ_{\text{TM}}$

1. Since A_{TM} is undecidable, EQ_{TM} is also undecidable

2. $A_{TM} \leq_m EQ_{TM}$ implies $A_{TM} \leq_m EQ_{TM}$ Since A_{TM} is unrecognizable, EQ_{TM} is unrecognizable

EQ_{TM} itself is also unrecognizable

 $EQ_{TM} = \{ (M_1, M_2) | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: $\overline{A_{TM}} \leq_m EQ_{TM}$ (Hence EQ_{TM} is unrecognizable) Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

- 1. Construct TMs M_1 , M_2 as follows:
	- -
	- 2. Run M on input W
	- 3. If M accepts, accept. Otherwise, reject."
- 2. Output $\langle M_1, M_2 \rangle$

 M_1 = "On input x, M_2 = "On input x,
1. Ignore x 1. Ignore x and re

1. Ignore x 1. Ignore x and reject"