BU CS 332 – Theory of Computation

https://forms.gle/dNF9ECAsFxeJ48dp8

Lecture 17:

Mapping Reductions

Reading:

Sipser Ch 5.3

Mark Bun April 3, 2024

Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Positive uses: If A reduces to B and B is decidable, then A is also decidable

Ex. E_{DFA} is decidable $\Rightarrow EQ_{\text{DFA}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Ex. $E_{\rm TM}$ is undecidable $\Rightarrow EQ_{\rm TM}$ is undecidable

What's wrong with the following "proof"?

Bogus "Theorem": A_{TM} is not Turing-recognizable

Bogus "Proof": Let R be an alleged recognizer for A_{TM} . We construct a recognizer S for unrecognizable language A_{TM} :

On input $\langle M, w \rangle$:

- 1. Run R on input $\langle M, w \rangle$
- 2. If R accepts, reject. If R rejects, accept.

This sure looks like a reduction from $\overline{A_{\rm TM}}$ to $A_{\rm TM}$

Mapping Reductions: Motivation

- 1. How do we formalize the notion of a reduction?
- 2. How do we use reductions to show that languages are unrecognizable?
- 3. How do we protect ourselves from accidentally "proving" bogus statements about recognizability?

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Example 1: f(w) = sort(w)

Example 2: $f(\langle x, y \rangle) = x + y$

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Example 3: $f(\langle M, w \rangle) = \langle M' \rangle$ where M is a TM, w is a string, and M' is a TM that ignores its input and simulates running M on w

Mapping Reductions

Definition:

Let $A, B \subseteq \Sigma^*$ be languages. We say A is mapping reducible to B, written

$$A \leq_{\mathsf{m}} B$$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

Mapping Reductions

Definition:

Language A is mapping reducible to language B, written $A \leq_{m} B$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

If $A \leq_{\mathrm{m}} B$, which of the following is true?

- a) $\bar{A} \leq_{\mathrm{m}} B$
- b) $A \leq_{\mathrm{m}} \bar{B}$
- c) $\bar{A} \leq_{\mathsf{m}} \bar{B}$
- d) $\bar{B} \leq_{\rm m} \bar{A}$

Decidability

Theorem: If $A \leq_{\mathbf{m}} B$ and B is decidable, then A is also decidable

Proof: Let M be a decider for B and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from A to B. We can construct a decider N for A as follows:

On input w:

- 1. Compute f(w)
- 2. Run M on input f(w)
- 3. If *M* accepts, accept. If it rejects, reject.

Undecidability

Theorem: If $A \leq_{\mathbf{m}} B$ and B is decidable, then A is also decidable

Corollary: If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is also undecidable

Old Proof: Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $EQ_{\rm TM}$. We construct a decider for $E_{\rm TM}$ as follows:

On input $\langle M \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = M$$

$$M_2$$
 = "On input x ,
1. Ignore x and reject"

- 2. Run R on input $\langle M_1, M_2 \rangle$
- 3. If *R* accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}

New Proof: Equality Testing for TMs

```
EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}
```

Theorem: $E_{TM} \leq_{\text{m}} EQ_{TM}$ (Hence EQ_{TM} is undecidable)

Proof: The following TM N computes the reduction f:

On input $\langle M \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = M$$

$$M_2$$
 = "On input x ,
1. Ignore x and reject"

2. Output $\langle M_1, M_2 \rangle$

Mapping Reductions: Recognizability

Theorem: If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is also recognizable

Proof: Let M be a recognizer for B and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from A to B. Construct a recognizer N for A as follows:

On input w:

- 1. Compute f(w)
- 2. Run M on input f(w)
- 3. If *M* accepts, accept. If it rejects, reject.

Unrecognizability

Theorem: If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is also recognizable

Corollary: If $A \leq_{\mathrm{m}} B$ and A is unrecognizable, then B is also unrecognizable

Corollary: If $\overline{A_{TM}} \leq_m B$, then B is unrecognizable

Recognizability and A_{TM}

Let L be a language. Which of the following is true?

- a) If $L \leq_{\mathrm{m}} A_{\mathrm{TM}}$, then L is recognizable
- b) If $A_{TM} \leq_m L$, then L is recognizable
- c) If L is recognizable, then $L \leq_{\mathrm{m}} A_{\mathrm{TM}}$
- d) If L is recognizable, then $A_{\rm TM} \leq_{\rm m} L$

Theorem: L is recognizable if and only if $L \leq_{\mathrm{m}} A_{\mathrm{TM}}$

Recognizability and A_{TM}

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ Proof:

Example: Another reduction to EQ_{TM}

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$

Proof: The following TM N computes the reduction f:

What should the inputs and outputs to f be?

- a) f should take as input a pair $\langle M_1, M_2 \rangle$ and output a pair $\langle M, w \rangle$
- b) f should take as input a pair $\langle M, w \rangle$ and output a pair $\langle M_1, M_2 \rangle$
- c) f should take as input a pair $\langle M_1, M_2 \rangle$ and either accept or reject
- d) f should take as input a pair $\langle M, w \rangle$ and either accept or reject

Example: Another reduction to EQ_{TM}

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$

Proof: The following TM computes the reduction f:

On input $\langle M, w \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1$$
 = "On input x , M_2 = "On input x ,

2. Output $\langle M_1, M_2 \rangle$

Consequences of $A_{\rm TM} \leq_{\rm m} EQ_{\rm TM}$

1. Since A_{TM} is undecidable, EQ_{TM} is also undecidable

2. $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$ implies $\overline{A_{\text{TM}}} \leq_{\text{m}} \overline{EQ_{\text{TM}}}$ Since $\overline{A_{\text{TM}}}$ is unrecognizable, $\overline{EQ_{\text{TM}}}$ is unrecognizable

EQ_{TM} itself is also unrecognizable

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: $\overline{A_{TM}} \leq_{\text{m}} EQ_{TM}$ (Hence EQ_{TM} is unrecognizable)

Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1$$
 = "On input x ,

- 1. Ignore x
- 2. Run *M* on input *w*
- 3. If *M* accepts, accept. Otherwise, reject."
- 2. Output $\langle M_1, M_2 \rangle$

$$M_2$$
 = "On input x ,

1. Ignore x and reject"