
BU CS 332 – Theory of Computation

Lecture 18:
• Asymptotic Notation

• Time/Space Complexity

• Complexity Class P

Reading:

Sipser Ch 7.1, 7.2, 8.0

Mark Bun

April 8, 2024

https://forms.gle/YQaFs3aX9dSVod4e6

https://forms.gle/YQaFs3aX9dSVod4e6

Where we are in CS 332

4/8/2024 CS332 - Theory of Computation 2

Automata Computability Complexity

Previous unit: Computability theory
What problems can / can’t computers solve?

Final unit: Complexity theory
What problems can / can’t computers solve under
 constraints on their computational resources?

Time and space complexity

Today: Start answering the basic questions

1. How do we measure complexity? (as in CS 330)

2. Asymptotic notation (as in CS 330)

3. How robust is the TM model when we care about
measuring complexity?

4. How do we mathematically capture our intuitive
notion of “efficient algorithms”?

4/8/2024 CS332 - Theory of Computation 3

Time and space complexity

Time complexity of a TM = Running time of an algorithm

= Max number of steps as a function of input length 𝑛

Space complexity of a TM = Memory usage of algorithm

= Max number of tape cells as a function of input length 𝑛

4/8/2024 CS332 - Theory of Computation 4

Example

In how much time/space can a basic single-tape TM decide
𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}?

One particular TM 𝑀 deciding this language:

𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

4/8/2024 CS332 - Theory of Computation 5

Example
𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

What is the time complexity of 𝑀?

a) 𝑂(1) [constant time]

b) 𝑂(𝑛) [linear time]

c) 𝑂 𝑛2 [quadratic time]

d) 𝑂(𝑛3) [cubic time]

What is the space complexity of 𝑀?

4/8/2024 CS332 - Theory of Computation 6

Review of asymptotic notation
𝑂-notation (upper bounds)

𝑓 𝑛 = 𝑂(𝑔 𝑛) means:

There exist constants 𝑐 > 0, 𝑛0 > 0 such that

𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for every 𝑛 ≥ 𝑛0

Example: 2𝑛2 + 12 = 𝑂(𝑛3) (𝑐 = 3, 𝑛0 = 4)

4/8/2024 CS332 - Theory of Computation 7

Properties of asymptotic notation:

Transitive:

𝑓 𝑛 = 𝑂(𝑔 𝑛) and 𝑔 𝑛 = 𝑂(ℎ 𝑛) means 𝑓 𝑛 = 𝑂(ℎ 𝑛)

Not reflexive:

𝑓 𝑛 = 𝑂(𝑔 𝑛) does not mean 𝑔 𝑛 = 𝑂(𝑓 𝑛)

Example: 𝑓 𝑛 = 2𝑛2, 𝑔 𝑛 = 𝑛3

Alternative (better) notation: 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛)

4/8/2024 CS332 - Theory of Computation 8

Examples

4/8/2024 CS332 - Theory of Computation 9

• 106 𝑛3 + 2𝑛2 − 𝑛 + 10 =

• 𝑛 + log 𝑛 =

• 𝑛 (log 𝑛 + 𝑛) =

Little-oh

4/8/2024 CS332 - Theory of Computation 10

If 𝑂-notation is like , then 𝑜-notation is like <

Example: 2𝑛2 + 12 = 𝑜(𝑛3) (𝑛0 = max{4/𝑐, 3})

𝑓 𝑛 = 𝑜(𝑔 𝑛) means:
 For every constant 𝑐 > 0, there exists 𝑛0 > 0 such that
 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for every 𝑛 ≥ 𝑛0

True facts about asymptotic expressions

Which of the following statements is true about the
function 𝑓 𝑛 = 2𝑛?

a) 𝑓 𝑛 = 𝑂 3𝑛

b) 𝑓 𝑛 = 𝑜 3𝑛

c) 𝑓 𝑛 = 𝑂 𝑛2

d) 𝑛2 = 𝑂(𝑓 𝑛)

4/8/2024 CS332 - Theory of Computation 11

Asymptotic notation within expressions

Asymptotic notation within an expression is shorthand for
“there exists a function satisfying the statement”

Examples:

• 𝑛𝑂(1)

• 𝑛2 + 𝑂 𝑛

• 1 + 𝑜 1 𝑛

4/8/2024 CS332 - Theory of Computation 12

FAABs: Frequently asked asymptotic bounds

4/8/2024 CS332 - Theory of Computation 13

• Polynomials. 𝑎0 + 𝑎1𝑛 + … + 𝑎𝑑𝑛𝑑 is 𝑂(𝑛𝑑) if 𝑎𝑑 > 0

• Logarithms. log 𝑎
𝑛 = 𝑂(log 𝑏

𝑛) for all constants 𝑎, 𝑏 > 0

 For every 𝑐 > 0, log 𝑛 = 𝑜(𝑛𝑐)

• Exponentials. For all 𝑏 > 1 and all 𝑑 > 0, 𝑛𝑑 = 𝑜(𝑏𝑛)

• Factorial. 𝑛! = 𝑛 𝑛 − 1 ⋯ 1

 By Stirling’s formula,

𝑛! = 2𝜋𝑛
𝑛

𝑒

𝑛

1 + 𝑜 1 = 2𝑂(𝑛 log 𝑛)

Time and Space Complexity

4/8/2024 CS332 - Theory of Computation 14

Running time analysis

Time complexity of a TM (algorithm) = maximum number of
steps it takes on a worst-case input

Formally: Let 𝑓 ∶ ℕ → ℕ. A TM 𝑀 runs in time 𝑓(𝑛) if on
every input 𝑤 ∈ Σ𝑛, 𝑀 halts on 𝑤 within at most 𝑓(𝑛) steps

- Focus on worst-case running time: Upper bound of 𝑓 𝑛

must hold for all inputs of length 𝑛

- Exact running time 𝑓 𝑛 does not translate well between

computational models / real computers. Instead focus on

asymptotic complexity.

4/8/2024 CS332 - Theory of Computation 15

Time complexity classes

Let 𝑓 ∶ ℕ → ℕ

TIME(𝑓(𝑛)) is a set (“class”) of languages:

A language 𝐴 ∈ TIME(𝑓(𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀 that

1) Decides 𝐴, and

2) Runs in time 𝑂(𝑓(𝑛))

4/8/2024 CS332 - Theory of Computation 16

Time class containment

If 𝑓 𝑛 = 𝑂(𝑔 𝑛), then which of the following
statements is always true?

a) TIME 𝑓 𝑛 ⊆ TIME 𝑔 𝑛

b) TIME 𝑔 𝑛 ⊆ TIME 𝑓 𝑛

c) TIME 𝑓 𝑛 = TIME 𝑔 𝑛

d) None of the above

4/8/2024 CS332 - Theory of Computation 17

4/8/2024 CS332 - Theory of Computation 18

Example

𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}

𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• 𝑀 runs in time 𝑂 𝑛2

• Is there a faster algorithm?

4/8/2024 CS332 - Theory of Computation 19

Example

𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}

𝑀′ = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

• Reject if the total number of 0’s and 1’s remaining is odd

• Cross off every other 0 and every other 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• Running time of 𝑀′:

• Is there a faster algorithm?

4/8/2024 CS332 - Theory of Computation 20

Example

Running time of 𝑀′: 𝑂 𝑛 log 𝑛

Theorem (Sipser, Problem 7.49): If 𝐿 can be decided in
𝑜 𝑛 log 𝑛 time on a 1-tape TM, then 𝐿 is regular

4/8/2024 CS332 - Theory of Computation 21

Does it matter that we’re using the 1-tape
model for this result?
It matters: 2-tape TMs can decide 𝐴 faster

𝑀′′ = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. Copy 0’s to tape 2

3. Scan tape 1. For each 1 read, cross off a 0 on tape 2

4. If 0’s on tape 2 finish at same time as 1’s on tape 1, accept.
Otherwise, reject.”

Analysis: 𝐴 is decided in time 𝑂(𝑛) on a 2-tape TM

Moral of the story (part 1): Unlike decidability, time
complexity depends on the TM model

4/8/2024 CS332 - Theory of Computation 22

How much does the model matter?

Theorem: Let 𝑡 𝑛 ≥ 𝑛 be a function. Every multi-tape
TM running in time 𝑡 𝑛 has an equivalent single-tape TM
running in time 𝑂(𝑡 𝑛 2)

Proof idea:

We already saw how to simulate a multi-tape TM with a
single-tape TM

Need a runtime analysis of this construction

Moral of the story (part 2): Time complexity doesn’t
depend too much on the TM model (as long as it’s
deterministic, sequential)

4/8/2024 CS332 - Theory of Computation 23

Extended Church-Turing Thesis

Every “reasonable” model of computation can be
simulated by a basic, single-tape TM with only a
polynomial slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs

Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation,
parallel computation, DNA computing, quantum
computation

4/8/2024 CS332 - Theory of Computation 24

Complexity class P

Definition: P is the class of languages decidable in
polynomial time on a basic single-tape (deterministic) TM

P = 𝑘=1ڂ
∞ TIME(𝑛𝑘)

• Class doesn’t change if we substitute in another
reasonable deterministic model (Extended Church-Turing)

• Cobham-Edmonds Thesis: Roughly captures class of
problems that are feasible to solve on computers

4/8/2024 CS332 - Theory of Computation 25

A note about encodings

We’ll still use the notation for “any reasonable”
encoding of the input to a TM…but now we have to be
more careful about what we mean by “reasonable”

How long is the encoding of a 𝑉-vertex, 𝐸-edge graph…

… as an adjacency matrix?

… as an adjacency list?

How long is the encoding of a natural number 𝑘

… in binary?

… in decimal?

… in unary?

4/8/2024 CS332 - Theory of Computation 26

Describing and analyzing polynomial-time
algorithms

• Due to Extended Church-Turing Thesis, we can still use
high-level descriptions on multi-tape machines

• Polynomial-time is robust under composition: poly(𝑛)
executions of poly(𝑛)-time subroutines run on poly(𝑛)-
size inputs gives an algorithm running in poly(𝑛) time.

⇒ Can freely use algorithms we’ve seen before as
subroutines if we’ve analyzed their runtime

• Need to be careful about size of inputs! (Assume inputs
represented in binary unless otherwise stated.)

4/8/2024 CS332 - Theory of Computation 27

Space complexity

Space complexity of a TM (algorithm) = maximum number of
tape cells it uses on a worst-case input

Formally: Let 𝑓 ∶ ℕ → ℕ. A TM 𝑀 runs in space 𝑓(𝑛) if on
every input 𝑤 ∈ Σ𝑛, 𝑀 halts on 𝑤 using at most 𝑓(𝑛) cells

A language 𝐴 ∈ SPACE(𝑓(𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀 that

1) Decides 𝐴, and

2) Runs in time 𝑂(𝑓(𝑛))

4/8/2024 CS332 - Theory of Computation 28

Back to our examples

𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}

Theorem: Let 𝑠 𝑛 ≥ 𝑛 be a function. Every multi-tape
TM running in space 𝑠 𝑛 has an equivalent single-tape
TM running in space 𝑂(𝑠(𝑛))

4/8/2024 CS332 - Theory of Computation 29

	Slide 1: BU CS 332 – Theory of Computation
	Slide 2: Where we are in CS 332
	Slide 3: Time and space complexity
	Slide 4: Time and space complexity
	Slide 5: Example
	Slide 6: Example
	Slide 7: Review of asymptotic notation
	Slide 8: Properties of asymptotic notation:
	Slide 9: Examples
	Slide 10: Little-oh
	Slide 11: True facts about asymptotic expressions
	Slide 12: Asymptotic notation within expressions
	Slide 13: FAABs: Frequently asked asymptotic bounds
	Slide 14: Time and Space Complexity
	Slide 15: Running time analysis
	Slide 16: Time complexity classes
	Slide 17: Time class containment
	Slide 18
	Slide 19: Example
	Slide 20: Example
	Slide 21: Example
	Slide 22: Does it matter that we’re using the 1-tape model for this result?
	Slide 23: How much does the model matter?
	Slide 24: Extended Church-Turing Thesis
	Slide 25: Complexity class P
	Slide 26: A note about encodings
	Slide 27: Describing and analyzing polynomial-time algorithms
	Slide 28: Space complexity
	Slide 29: Back to our examples

