BU CS 332 – Theory of Computation

<https://forms.gle/YQaFs3aX9dSVod4e6>

Lecture 18:

- Asymptotic Notation
- Time/Space Complexity
- Complexity Class P

Reading:

Sipser Ch 7.1, 7.2, 8.0

Mark Bun April 8, 2024

Where we are in CS 332

Previous unit: Computability theory What problems can / can't computers solve?

Final unit: Complexity theory What problems can / can't computers solve under constraints on their computational resources?

Time and space complexity

Today: Start answering the basic questions

- 1. How do we measure complexity? (as in CS 330)
- 2. Asymptotic notation (as in CS 330)
- 3. How robust is the TM model when we care about measuring complexity?
- 4. How do we mathematically capture our intuitive notion of "efficient algorithms"?

Time and space complexity

Time complexity of a TM = Running time of an algorithm

= Max number of steps as a function of input length n

Space complexity of a TM = Memory usage of algorithm = Max number of tape cells as a function of input length n

In how much time/space can a basic single-tape TM decide $A = \{0^m 1^m \mid m \ge 0\}$?

One particular TM M deciding this language: $M =$ "On input w:

- 1. Scan input and reject if not of the form 0^*1^*
- 2. While input contains both 0's and 1's:

Cross off one 0 and one 1

3. Accept if no 0's and no 1's left. Otherwise, reject."

 $M =$ "On input w:

- 1. Scan input and reject if not of the form 0^*1^*
- 2. While input contains both 0's and 1's:

Cross off one 0 and one 1

3. Accept if no 0's and no 1's left. Otherwise, reject."

What is the time complexity of M ?

- a) $O(1)$ [constant time]
- b) $O(n)$ [linear time]
- c) $O(n^2)$ [quadratic time]
- d) $O(n^3)$ [cubic time]

What is the space complexity of M ?

Review of asymptotic notation O -notation (upper bounds)

 $f(n) = O(g(n))$ means: There exist constants $c > 0$, $n_0 > 0$ such that $f(n) \leq c g(n)$ for every $n \geq n_0$

Example:
$$
2n^2 + 12 = O(n^3)
$$
 $(c = 3, n_0 = 4)$

Properties of asymptotic notation:

Transitive:

 $f(n) = O(g(n))$ and $g(n) = O(h(n))$ means $f(n) = O(h(n))$

Not reflexive:

 $f(n) = O(g(n))$ does not mean $g(n) = O(f(n))$

Example: $f(n) = 2n^2$, $g(n) = n^3$

Alternative (better) notation: $f(n) \in O(g(n))$

• $10^6 n^3 + 2n^2 - n + 10 =$

 $\sqrt{n} + \log n =$

• $n (\log n + \sqrt{n}) =$

Little-oh

If O-notation is like \leq , then o-notation is like \lt $f(n) = o(g(n))$ means: For every constant $c > 0$, there exists $n_0 > 0$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_0$

Example: $2n^2 + 12 = o(n^3)$ $(n_0 = \max\{4/c, 3\})$

True facts about asymptotic expressions

Which of the following statements is true about the function $f(n) = 2^n$?

a)
$$
f(n) = O(3^n)
$$

$$
b) \quad f(n) = o(3^n)
$$

c)
$$
f(n) = O(n^2)
$$

d)
$$
n^2 = O(f(n))
$$

Asymptotic notation within expressions

Asymptotic notation within an expression is shorthand for "there exists a function satisfying the statement"

Examples:

 $\cdot n^{O(1)}$

• $n^2 + O(n)$

• $(1 + o(1))n$

FAABs: Frequently asked asymptotic bounds

- Polynomials. $a_0 + a_1 n + \dots + a_d n^d$ is $O(n^d)$ if $a_d > 0$
- Logarithms. $\log_a n = O(\log_b n)$ for all constants $a, b > 0$

For every
$$
c > 0
$$
, $\log n = o(n^c)$

- Exponentials. For all $b > 1$ and all $d > 0$, $n^d = o(b^n)$
- Factorial. $n! = n(n-1)\cdots 1$ By Stirling's formula, $n! = (\sqrt{2\pi n})$ \overline{n} \boldsymbol{e} \overline{n} $1 + o(1) = 2^{O(n \log n)}$

Time and Space Complexity

Running time analysis

Time complexity of a TM (algorithm) = maximum number of steps it takes on a worst-case input

Formally: Let $f : \mathbb{N} \to \mathbb{N}$. A TM M runs in time $f(n)$ if on every input $w \in \Sigma^n$, M halts on w within at most $f(n)$ steps

- Focus on worst-case running time: Upper bound of $f(n)$ must hold for all inputs of length n
- Exact running time $f(n)$ does not translate well between computational models / real computers. Instead focus on asymptotic complexity.

Time complexity classes

Let $f : \mathbb{N} \to \mathbb{N}$ $TIME(f(n))$ is a set ("class") of languages:

A language $A \in TIME(f(n))$ if there exists a basic singletape (deterministic) TM M that

- 1) Decides A , and
- 2) Runs in time $O(f(n))$

Time class containment

If $f(n) = O(g(n))$, then which of the following statements is always true?

- a) TIME $(f(n)) \subseteq$ TIME $(g(n))$
- b) TIME $(g(n)) \subseteq$ TIME $(f(n))$
- c) TIME $(f(n))$ = TIME $(g(n))$
- d) None of the above

- $A = \{0^m 1^m \mid m \ge 0\}$
- $M =$ "On input w :
	- 1. Scan input and reject if not of the form 0^*1^* 2. While input contains both 0's and 1's: Cross off one 0 and one 1 3. Accept if no 0's and no 1's left. Otherwise, reject."
- M runs in time $O(n^2)$
- Is there a faster algorithm?

- $A = \{0^m 1^m \mid m \ge 0\}$
- M' = "On input w:
	- 1. Scan input and reject if not of the form 0^*1^*
	- 2. While input contains both 0's and 1's:
		- Reject if the total number of 0's and 1's remaining is odd
		- Cross off every other 0 and every other 1
	- 3. Accept if no 0's and no 1's left. Otherwise, reject."
- Running time of M' :
- Is there a faster algorithm?

Running time of M' : $O(n \log n)$

Theorem (Sipser, Problem 7.49): If L can be decided in $o(n \log n)$ time on a 1-tape TM, then L is regular

Does it matter that we're using the 1-tape model for this result?

It matters: 2-tape TMs can decide A faster

 $M'' =$ "On input w:

- 1. Scan input and reject if not of the form 0^*1^*
- 2. Copy 0's to tape 2
- 3. Scan tape 1. For each 1 read, cross off a 0 on tape 2
- 4. If 0's on tape 2 finish at same time as 1's on tape 1, accept. Otherwise, reject."

Analysis: A is decided in time $O(n)$ on a 2-tape TM Moral of the story (part 1): Unlike decidability, time complexity depends on the TM model

How *much* does the model matter?

Theorem: Let $t(n) \geq n$ be a function. Every multi-tape TM running in time $t(n)$ has an equivalent single-tape TM running in time $O(t(n)^2)$

Proof idea:

We already saw how to simulate a multi-tape TM with a single-tape TM

Need a runtime analysis of this construction

Moral of the story (part 2): Time complexity doesn't depend too much on the TM model (as long as it's deterministic, sequential)

Extended Church-Turing Thesis

Every "reasonable" model of computation can be simulated by a basic, single-tape TM with only a **polynomial** slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation, parallel computation, DNA computing, quantum computation

Complexity class P

Definition: P is the class of languages decidable in polynomial time on a basic single-tape (deterministic) TM

$$
P = U_{k=1}^{\infty} \text{TIME}(n^k)
$$

- Class doesn't change if we substitute in another reasonable deterministic model (Extended Church-Turing)
- Cobham-Edmonds Thesis: Roughly captures class of problems that are feasible to solve on computers

A note about encodings

We'll still use the notation $\langle \rangle$ for "any reasonable" encoding of the input to a TM…but now we have to be more careful about what we mean by "reasonable"

How long is the encoding of a V-vertex, E -edge graph... … as an adjacency matrix? … as an adjacency list? How long is the encoding of a natural number k … in binary? … in decimal? … in unary?

Describing and analyzing polynomial-time algorithms

- Due to Extended Church-Turing Thesis, we can still use high-level descriptions on multi-tape machines
- Polynomial-time is robust under composition: $poly(n)$ executions of $poly(n)$ -time subroutines run on $poly(n)$ size inputs gives an algorithm running in $poly(n)$ time. ⇒ Can freely use algorithms we've seen before as subroutines if we've analyzed their runtime

• Need to be careful about size of inputs! (Assume inputs represented in binary unless otherwise stated.)

Space complexity

Space complexity of a TM (algorithm) = maximum number of tape cells it uses on a worst-case input

Formally: Let $f : \mathbb{N} \to \mathbb{N}$. A TM M runs in space $f(n)$ if on every input $w \in \Sigma^n$, M halts on w using at most $f(n)$ cells

A language $A \in SPACE(f(n))$ if there exists a basic singletape (deterministic) TM M that

- 1) Decides A , and
- 2) Runs in time $O(f(n))$

Back to our examples

 $A = \{0^m 1^m \mid m \ge 0\}$

Theorem: Let $s(n) \geq n$ be a function. Every multi-tape TM running in space $s(n)$ has an equivalent single-tape TM running in space $O(s(n))$