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Where we are in CS 332
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Automata Computability Complexity

Previous unit: Computability theory
What problems can / can’t computers solve?

Final unit: Complexity theory
What problems can / can’t computers solve under 
 constraints on their computational resources?



Time and space complexity

Today: Start answering the basic questions

1. How do we measure complexity? (as in CS 330)

2. Asymptotic notation (as in CS 330)

3. How robust is the TM model when we care about 
measuring complexity?

4. How do we mathematically capture our intuitive 
notion of “efficient algorithms”?
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Time and space complexity

Time complexity of a TM = Running time of an algorithm

= Max number of steps as a function of input length 𝑛

Space complexity of a TM = Memory usage of algorithm

= Max number of tape cells as a function of input length 𝑛
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Example

In how much time/space can a basic single-tape TM decide 
𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}?

One particular TM 𝑀 deciding this language:

𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”
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Example
𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

What is the time complexity of 𝑀?

a) 𝑂(1) [constant time]

b) 𝑂(𝑛) [linear time]

c) 𝑂 𝑛2 [quadratic time]

d) 𝑂(𝑛3) [cubic time]

What is the space complexity of 𝑀?
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Review of asymptotic notation
𝑂-notation (upper bounds)

𝑓 𝑛 = 𝑂(𝑔 𝑛 ) means:

There exist constants 𝑐 > 0, 𝑛0 > 0 such that 

𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for every 𝑛 ≥ 𝑛0

Example:     2𝑛2 + 12 = 𝑂(𝑛3) (𝑐 = 3, 𝑛0 = 4)

4/8/2024 CS332 - Theory of Computation 7



Properties of asymptotic notation:

Transitive:

𝑓 𝑛 = 𝑂(𝑔 𝑛 ) and 𝑔 𝑛 = 𝑂(ℎ 𝑛 ) means 𝑓 𝑛 = 𝑂(ℎ 𝑛 )

Not reflexive: 

𝑓 𝑛 = 𝑂(𝑔 𝑛 ) does not mean 𝑔 𝑛 = 𝑂(𝑓 𝑛 )

Example: 𝑓 𝑛 = 2𝑛2, 𝑔 𝑛 = 𝑛3

Alternative (better) notation: 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛 )
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Examples
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• 106 𝑛3 + 2𝑛2 − 𝑛 + 10 =

• 𝑛 + log 𝑛 =

• 𝑛 (log 𝑛 + 𝑛) =



Little-oh
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If 𝑂-notation is like , then 𝑜-notation is like <

Example:     2𝑛2 + 12 = 𝑜(𝑛3)  (𝑛0 = max{4/𝑐, 3}) 

𝑓 𝑛 = 𝑜(𝑔 𝑛 ) means:
 For every constant 𝑐 > 0, there exists 𝑛0 > 0 such that 
            𝑓 𝑛 ≤ 𝑐𝑔 𝑛  for every 𝑛 ≥ 𝑛0



True facts about asymptotic expressions

Which of the following statements is true about the 
function 𝑓 𝑛 = 2𝑛?

a) 𝑓 𝑛 = 𝑂 3𝑛

b) 𝑓 𝑛 = 𝑜 3𝑛

c) 𝑓 𝑛 = 𝑂 𝑛2

d) 𝑛2 = 𝑂(𝑓 𝑛 )
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Asymptotic notation within expressions

Asymptotic notation within an expression is shorthand for 
“there exists a function satisfying the statement”

Examples:

• 𝑛𝑂(1)

• 𝑛2 + 𝑂 𝑛

• 1 + 𝑜 1 𝑛
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FAABs: Frequently asked asymptotic bounds
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• Polynomials. 𝑎0 +  𝑎1𝑛 + … +  𝑎𝑑𝑛𝑑  is  𝑂(𝑛𝑑)  if  𝑎𝑑 > 0

• Logarithms. log 𝑎 
𝑛 = 𝑂(log 𝑏 

𝑛) for all constants 𝑎, 𝑏 >  0

                          For every 𝑐 >  0,  log 𝑛 =  𝑜(𝑛𝑐)

• Exponentials. For all 𝑏 > 1 and all 𝑑 >  0,  𝑛𝑑 =  𝑜(𝑏𝑛)

• Factorial.  𝑛! = 𝑛 𝑛 − 1 ⋯ 1

 By Stirling’s formula,

𝑛! = 2𝜋𝑛
𝑛

𝑒

𝑛

1 + 𝑜 1 = 2𝑂(𝑛 log 𝑛)



Time and Space Complexity
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Running time analysis

Time complexity of a TM (algorithm) = maximum number of 
steps it takes on a worst-case input

Formally: Let 𝑓 ∶ ℕ → ℕ. A TM 𝑀 runs in time 𝑓(𝑛) if on 
every input 𝑤 ∈ Σ𝑛, 𝑀 halts on 𝑤 within at most 𝑓(𝑛) steps

- Focus on worst-case running time: Upper bound of 𝑓 𝑛

must hold for all inputs of length 𝑛

- Exact running time 𝑓 𝑛 does not translate well between   

computational models / real computers. Instead focus on 

asymptotic complexity.
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Time complexity classes

Let 𝑓 ∶ ℕ → ℕ

TIME(𝑓(𝑛)) is a set (“class”) of languages:

A language 𝐴 ∈ TIME(𝑓(𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀 that 

1) Decides 𝐴, and

2) Runs in time 𝑂(𝑓(𝑛))
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Time class containment

If 𝑓 𝑛 = 𝑂(𝑔 𝑛 ), then which of the following 
statements is always true?

a)   TIME 𝑓 𝑛 ⊆ TIME 𝑔 𝑛

b)   TIME 𝑔 𝑛 ⊆ TIME 𝑓 𝑛

c)   TIME 𝑓 𝑛 = TIME 𝑔 𝑛

d)   None of the above
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Example

𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}

𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• 𝑀 runs in time 𝑂 𝑛2

• Is there a faster algorithm?
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Example

𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}

𝑀′ = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

• Reject if the total number of 0’s and 1’s remaining is odd

• Cross off every other 0 and every other 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• Running time of 𝑀′:

• Is there a faster algorithm?
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Example

Running time of 𝑀′: 𝑂 𝑛 log 𝑛

Theorem (Sipser, Problem 7.49): If 𝐿 can be decided in 
𝑜 𝑛 log 𝑛 time on a 1-tape TM, then 𝐿 is regular
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Does it matter that we’re using the 1-tape 
model for this result?
It matters: 2-tape TMs can decide 𝐴 faster

𝑀′′ = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. Copy 0’s to tape 2

3. Scan tape 1. For each 1 read, cross off a 0 on tape 2

4. If 0’s on tape 2 finish at same time as 1’s on tape 1, accept. 
Otherwise, reject.”

Analysis: 𝐴 is decided in time 𝑂(𝑛) on a 2-tape TM

Moral of the story (part 1): Unlike decidability, time 
complexity depends on the TM model
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How much does the model matter?

Theorem: Let 𝑡 𝑛 ≥ 𝑛 be a function. Every multi-tape 
TM running in time 𝑡 𝑛 has an equivalent single-tape TM 
running in time 𝑂(𝑡 𝑛 2)

Proof idea:

We already saw how to simulate a multi-tape TM with a 
single-tape TM

Need a runtime analysis of this construction

Moral of the story (part 2): Time complexity doesn’t 
depend too much on the TM model (as long as it’s 
deterministic, sequential)
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Extended Church-Turing Thesis

Every “reasonable” model of computation can be 
simulated by a basic, single-tape TM with only a 
polynomial slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs

Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation, 
parallel computation, DNA computing, quantum 
computation
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Complexity class P

Definition: P is the class of languages decidable in 
polynomial time on a basic single-tape (deterministic) TM

P = 𝑘=1ڂ
∞ TIME(𝑛𝑘)

• Class doesn’t change if we substitute in another 
reasonable deterministic model (Extended Church-Turing)

• Cobham-Edmonds Thesis: Roughly captures class of 
problems that are feasible to solve on computers
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A note about encodings

We’ll still use the notation for “any reasonable” 
encoding of the input to a TM…but now we have to be 
more careful about what we mean by “reasonable”

How long is the encoding of a 𝑉-vertex, 𝐸-edge graph…

… as an adjacency matrix?

… as an adjacency list?

How long is the encoding of a natural number 𝑘

… in binary?

… in decimal?

… in unary?
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Describing and analyzing polynomial-time 
algorithms

• Due to Extended Church-Turing Thesis, we can still use 
high-level descriptions on multi-tape machines

• Polynomial-time is robust under composition: poly(𝑛)
executions of poly(𝑛)-time subroutines run on poly(𝑛)-
size inputs gives an algorithm running in poly(𝑛) time.

⇒ Can freely use algorithms we’ve seen before as 
subroutines if we’ve analyzed their runtime

• Need to be careful about size of inputs! (Assume inputs 
represented in binary unless otherwise stated.)
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Space complexity

Space complexity of a TM (algorithm) = maximum number of 
tape cells it uses on a worst-case input

Formally: Let 𝑓 ∶ ℕ → ℕ. A TM 𝑀 runs in space 𝑓(𝑛) if on 
every input 𝑤 ∈ Σ𝑛, 𝑀 halts on 𝑤 using at most 𝑓(𝑛) cells

A language 𝐴 ∈ SPACE(𝑓(𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀 that 

1) Decides 𝐴, and

2) Runs in time 𝑂(𝑓(𝑛))
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Back to our examples

𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}

Theorem: Let 𝑠 𝑛 ≥ 𝑛 be a function. Every multi-tape 
TM running in space 𝑠 𝑛 has an equivalent single-tape 
TM running in space 𝑂(𝑠(𝑛))
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