BU CS 332 – Theory of Computation

https://forms.gle/tPzCFSW4dszu5dQB8

Lecture 19:

- Time/Space Complexity
- Time/Space Hierarchies
- Complexity Class P

Reading: Sipser Ch 9.1, 7.2

Mark BunApril 10, 2024

Last Time

• Analyzing time/space usage of TMs (algorithms)

Time complexity

Time complexity of a TM (algorithm) = maximum number of steps it takes on a worst-case input As a function of input
integration of the steps it takes on a worst-case input
model of the model of the steps it takes on a worst-case input Formally: Let $f : \mathbb{N} \to \mathbb{N}$. A TM M runs in time $f(n)$ if for every *n* and every input $w \in \Sigma^n$, *M* halts on w within at most $f(n)$ steps

"Class" or set of languages

A language $A \in \text{TIME}(f(n))$ if there exists a basic single-tape (deterministic) TM M that

1) Decides A , and

2) Runs in time $O(f(n))$

A E TIME (n²) if the exists
any guadrate-tive alg. solving 4 (e.g. running in tire 120², 100 m², 10^{6} n² ...

 $\boldsymbol{\lambda}$

Time class containment

If $f(n) = O(g(n))$, then which of the following statements is always true? $TrwE(f(x)) = \frac{1}{2}$ laynages μ , A:s decidable in time $\mathcal{O}(f(n))$ }

a)($A \in TIMF(F(n))$ ETIME(IG)) neans
J TM M 5.1. M decides A b)

- and M runs in time O'(f(n)) c) $TIME(f(n)) = TIME(g(n))$ => 7 TMM S.A. M decides A
	- d) None of the above

 $S = \exists ME(n^2)$ TJME(n) Class of publicars quatrake time Solvable in linear.

TIME(f(n))C TIME(g(n)).

and M runs in the O(g(n))

 $sime$ f(n) = $\mathcal{O}(g(n))$

=> Ae TJME(g(n)

Example

 $A = \{0^m 1^m \mid m \geq 0\}$

 M = "On input $w\colon$

1. Scan input and reject if not of the form $0^*1^* \leftarrow O(n)$ two 2. While input contains both $0's$ and $1's$: \int $O(n)$ Cross off one 0 and one 1 3. Accept if no 0's and no 1's left. Otherwise, reject."

- M runs in time $O(n^2)$ \Rightarrow A \in TIME(n²)
- Is there a faster algorithm?

Example

Q O Q Q Q X X X X X

- $A = \{0^m 1^m \mid m \geq 0\}$
- M' = "On input $w\colon$
	- 1. Scan input and reject if not of the form 0^*1^* $O(n)$
	- 2. While input contains both 0's and $1's:\nabla$ $\mathcal{O}(log \; n)$
		- Reject if the total number of 0's and 1's remaining is odd
		- $\bullet\backslash$ Cross off every other 0 and every other 1
	- 3. Accept if no 0's and no 1's left. Otherwise, reject."
- Running time of M' :

$$
\frac{O(n)}{\rho^{back}}
$$
 +

$$
O(logn) - O(n) = O(n
$$

lines. Though line by place 2
plane 2 loop

• Is there a faster algorithm?

4/10/2024 CS332 - Theory of Computation 6

 $O(nlog n)$

Example

Running time of M' : $O(n \log n)$

Theorem (Sipser, Problem 7.49): If L can be decided in $t_0(n \log n)$ time on a basic single-tape TM, then L is regular

$$
\begin{array}{lll}\n\text{Covella} & \text{The} \\
 & & & \text{The} \\
 & & & \text{The} \\
 & & & \text{The} \\
\end{array}
$$

Does it matter that we're using the 1-tape model for this result?

It matters: 2-tape TMs can decide A faster

00000 XNXX \mathcal{C} ddd \mathcal{C}

 $M^{\prime\prime}$ = "On input w :

- 1. Scan input and reject if not of the form 0 ∗ 1 ∗
- 2. Copy 0's to tape 2
- 3. Scan tape 1. For each 1 read, cross off a 0 on tape 2
- 4. If 0's on tape 2 finish at same time as 1's on tape 1, accept. Otherwise, reject."

Analysis: A is decided in time $O(n)$ on a 2-tape TM Moral of the story (part 1): Unlike decidability, time complexity depends on the TM model

How *much* does the model matter?

Theorem: Let $t(n)\geq n$ be a function. Every multi-tape TM running in time $t(n)$ has an equivalent single-tape TM running in time $O(t(n)^2)$

Proof idea:

We already saw how to simulate a multi-tape TM with a single-tape TM

Need a runtime analysis of this construction

Moral of the story (part 2): Time complexity doesn't depend too much on the TM model (as long as it's deterministic, sequential)

Single vs. Multi-Tape

Theorem: Let $t(n)\geq n$ be a function. Every multi-tape TM running in time $t(n)$ has an equivalent single-tape TM running in time $O(t(n)^2)$ Suppose B is decidable in time $O(n^2)$ on a 42-tape TM. What is the best upper bound you can give on the on sugle-type runtime of a basic single-tape TM deciding B ?

a)
$$
O(n^2)
$$

\n(b) $O(n^4)$
\nc) $O(n^{84})$
\nd) $2^{O(n)}$

Single vs. Multi-Tape

Theorem: Let $t(n)\geq n$ be a function. Every multi-tape TM running in time $t(n)$ has an equivalent single-tape TM running in time $O(t(n)^2)$

Proof idea:

We already saw how to simulate a multi-tape TM with a single-tape TM

Need a runtime analysis of this construction

Simulating Multiple Tapes

(Implementation-Level Description)

If 5 cells in use at sere On input $w = w_1 w_2$ $1 \vee 2 \cdots \vee n$ 1. Format tape into # $\dot{w_1}w_2$... w_n HQ 2. For each move of M : Scan left-to-right, finding current symbols ξ o(s) skys Scan left-to-right, writing new symbols, ϵ os stas Scan left-to-right, moving each tape head ϵ os sees

> If a tape head goes off the right end, insert blank If a tape head goes off left end, move back right

Single vs. Multi-Tape

Theorem: Let $t(n)\geq n$ be a function. Every multi-tape TM running in time $f(n)$ has an equivalent single-tape TM running in time $O(t(\widetilde n)^2)$

Proof: Time analysis of simulation

- Time to initialize (i.e., format tape):
- Time to simulate one step of multi-tape TM:
- Number of multi-tape steps to simulate: O(n+u+ut(n)

 $\frac{O(n+ic)}{in:ln|3a+o}$ + $O(k'n)$

Total time:

 $4/10/2024$ CS332 - Theory of Computation **AM H²T AC SIGP** 13

 \cdot $\Theta(\mu \cdot t(n)) = -O(Hn)^{2}$

singlation time

Extended Church-Turing Thesis

Every "reasonable" (physically realizable) model of computation can be simulated by a basic, single-tape TM with only a **polynomial** slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation, parallel computation, DNA computing, quantum Moe believable: ECT applies to deterministic, computation

Space complexity

Space complexity of a TM (algorithm) = maximum number of tape cells it uses on a worst-case input

Formally: Let $f : \mathbb{N} \to \mathbb{N}$. A TM M runs in space $f(n)$ if for every *n* and every input $w \in \Sigma^n$, *M* halts on w using at most $f(n)$ tape cells

A language $A \in SPACE(f(n))$ if there exists a basic singletape (deterministic) TM M that

- 1) Decides A , and
- 2) Runs in space $O(f(n))$

How does space relate to time? Which of the following is true for every function
 $f(n) > m$? TIME(S(n)) = { A diddle by a basic bas's simile <u>?</u> time $cf(n))$ $SPA(E(f(n)) = \{ A | ...$ space $\cdots \}$ $A \in TIME(Hn)$ $TIME(f(n)) \subseteq SPACE(f(n))$ a) =>3 TM M deciding A $SPACE(f(n)) \subseteq TIME(f(n))$ b) in the $\Omega(f(n))$ う 3 TM M decides A $TIME(f(n)) = SPACE(f(n))$ c) in spac offron) [be cannot d) None of the above M can puch at most $O(f(n))$ cells I_{max} [Hecroft class-valient "FF]: => HESPACE(f(n)) $TIME(Hn) \subseteq SIME(F(n) / log Rn)$ \Rightarrow TIME (f(n)) \subseteq SPA(E(f(n))

Back to our example $A \in \texttt{TIME}$ (nlog n) AE SPACE (n) m 1 m M = "On input w :

> 1. Scan input and reject if not of the form 0 ∗ 1 ∗

2. While input contains both 0's and 1's:

Cross off one 0 and one 1

3. Accept if no 0's and no 1's left. Otherwise, reject."

Theorem: Let $s(n) \geq n$ be a function. Every multi-tape TM running in space $s(n)$ has an equivalent single-tape TM running in space $O(s(n))$

Hierarchy Theorems

More time, more problems

We know, e.g., that $TIME(n^2) \subseteq TIME(n^3)$

(Anything we can do in quadratic time we can do in cubic time)

Question: Are there problems that we can solve in cubic time that we cannot solve in quadratic time?

Theorem: There is a language $L \in TIME(n^3)$, but $L\notin TIME(n^2)$

"Time hierarchy": 2) $(TIME(n^3)$ $TIME(n^4)$ A & B mas A C B bot 2 LEB cl. L & A. 4/10/2024 CS332 - Theory of Computation 19

Diagonalization redux

 $UD = \{ \langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}$ $L = \{ \langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}$ 2.5

An explicit separating language

Theorem: 2.5 is in $\mathit{TIME}(n^3)$, but not in $\mathit{TIME}(n^2)$ Proof Sketch: In $TIME(n^3)$ On input $\langle M \rangle$: $n=|CMS|$

- 1. Simulate M on input $\langle M \rangle$ for $n^{2.5}$ ³ steps
- 2. If M accepts, reject. If M rejects or did not yet halt, accept.

Twstrae: This su can be done in $O(n^3)$ An explicit separating language

Theorem:

2.5

is in $\mathit{TIME}(n^3)$, but not in $\mathit{TIME}(n^2)$ Proof Sketch: Not in $TIME$ ($n^{\small 2}$

Suppose for contradiction that D decides L in time $O(n^2)$ Eiler

1) 0 aabb
$$
\langle 0 \rangle = 0
$$
 adyds $\langle 0 \rangle$ u/m $O(n^2)$ shqs
\n $\Rightarrow 0 \notin L$ by dm. of L
\n(whadith conreks of 0)

2)
$$
\int
$$
 des μ dr acopl 60 \Rightarrow 0 \int r₃ch 60 μ ln $O(\mu^2)$ slets
 \Rightarrow 0 \int r₃ df. of L
Cathadt 1 suredres 5 0.

Time and space hierarchy theorems

- For every* function $t(n) \geq n \log n$, there exists a language decidable in $t(n)$ time, but not in $\frac{t(n)}{n}$ time. $\log t(n$
	-
- For every* function $s(n) \geq \log n$, there exists a languagedecidable in $s(n)$ space, but not in $o(s(n))$ space.

*"time constructible" and "space constructible", respectively

Complexity Class P

Time and space complexity

The basic questions

- 1. How do we measure complexity?
- 2. Asymptotic notation
- 3. How robust is the TM model when we care about measuring complexity?

4. \ How do we mathematically capture our intuitive notion of "efficient algorithms"?

Complexity class P

Definition: P is the class of languages decidable in polynomial time on a basic single-tape (deterministic) TM

$$
P = U_{k=1}^{\infty} \text{TIME}(n^k) = \text{TIME}(n) \cup \text{TIME}(n^2) \cup \text{TIME}(n^3)
$$

- Class doesn't change if we substitute in another reasonable deterministic model (Extended Church-Turing)
- Cobham-Edmonds Thesis: Roughly captures class of problems that are feasible to solve on computers

A note about encodings

We'll still use the notation $\langle \rangle$ for "any reasonable" encoding of the input to a TM…but now we have to be more careful about what we mean by "reasonable"

How long is the encoding of a V-vertex, E -edge graph... … as an adjacency matrix? … as an adjacency list? How long is the encoding of a natural number k … in binary? … in decimal?… in unary?

Describing and analyzing polynomial-time algorithms

- Due to Extended Church-Turing Thesis, we can still use high-level descriptions on multi-tape machines
- Polynomial-time is robust under composition: executions of $\operatorname{poly}(n)$ -time subroutines run on $\operatorname{poly}(n)$ size inputs gives an algorithm running in $poly(n)$ time. \Rightarrow Can freely use algorithms we've seen before as subroutines if we've analyzed their runtime
- Need to be careful about size of inputs! (Assume inputs represented in binary unless otherwise stated.)