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Last Time
• Asymptotic notation
Big-Oh: if there exist ଴ such that 

for all ଴

Little-Oh: if for every there exists ଴
such that for all ଴

• Analyzing time/space usage of TMs (algorithms)
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Time complexity
Time complexity of a TM (algorithm) = maximum number of 
steps it takes on a worst-case input

Formally: Let . A TM runs in time if for 
every and every input ௡, halts on within at most 

steps

A language if there exists a basic single-tape 
(deterministic) TM that 
1) Decides , and
2) Runs in time 
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Time class containment
If , then which of the following 
statements is always true?

a)   

b)   

c)   
d)   None of the above
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Example
𝐴 ൌ 0௠1௠  𝑚 ൒ 0ሽ
𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:
Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• runs in time ଶ

• Is there a faster algorithm?
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Example
𝐴 ൌ 0௠1௠  𝑚 ൒ 0ሽ
𝑀′ = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:
• Reject if the total number of 0’s and 1’s remaining is odd
• Cross off every other 0 and every other 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• Running time of :

• Is there a faster algorithm?
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Example
Running time of : 

Theorem (Sipser, Problem 7.49): If can be decided in 
time on a basic single-tape TM, then is 

regular
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Does it matter that we’re using the 1-tape 
model for this result?
It matters: 2-tape TMs can decide faster

𝑀′′ = “On input 𝑤:
1. Scan input and reject if not of the form 0∗1∗

2. Copy 0’s to tape 2
3. Scan tape 1. For each 1 read, cross off a 0 on tape 2
4. If 0’s on tape 2 finish at same time as 1’s on tape 1, accept. 

Otherwise, reject.”

Analysis: is decided in time on a 2-tape TM
Moral of the story (part 1): Unlike decidability, time 
complexity depends on the TM model
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How much does the model matter?
Theorem: Let be a function. Every multi-tape 
TM running in time has an equivalent single-tape TM 
running in time ଶ

Proof idea:
We already saw how to simulate a multi-tape TM with a 
single-tape TM
Need a runtime analysis of this construction

Moral of the story (part 2): Time complexity doesn’t 
depend too much on the TM model (as long as it’s 
deterministic, sequential)
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Single vs. Multi-Tape
Theorem: Let be a function. Every multi-tape 
TM running in time has an equivalent single-tape TM 
running in time ଶ
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Suppose is decidable in time ଶ on a 42-tape TM. 
What is the best upper bound you can give on the 
runtime of a basic single-tape TM deciding ?
a) ଶ

b) ସ

c) ଼ସ

d) ைሺ௡ሻ



Single vs. Multi-Tape
Theorem: Let be a function. Every multi-tape 
TM running in time has an equivalent single-tape TM 
running in time ଶ

Proof idea:
We already saw how to simulate a multi-tape TM with a 
single-tape TM
Need a runtime analysis of this construction
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Simulating Multiple Tapes
(Implementation-Level Description)

On input ଵ ଶ ௡
1.  Format tape into ଵ ଶ ௡
2.  For each move of :

Scan left-to-right, finding current symbols
Scan left-to-right, writing new symbols,
Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank
If a tape head goes off left end, move back right
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Single vs. Multi-Tape
Theorem: Let be a function. Every multi-tape 
TM running in time has an equivalent single-tape TM 
running in time ଶ

Proof: Time analysis of simulation
• Time to initialize (i.e., format tape): 
• Time to simulate one step of multi-tape TM: 

• Number of multi-tape steps to simulate: 
Total time:
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Extended Church-Turing Thesis
Every “reasonable” (physically realizable) model of 
computation can be simulated by a basic, single-tape TM 
with only a polynomial slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs
Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation, 
parallel computation, DNA computing, quantum 
computation
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Space complexity
Space complexity of a TM (algorithm) = maximum number of 
tape cells it uses on a worst-case input

Formally: Let . A TM runs in space if for 
every and every input ௡, halts on using at most 

tape cells

A language if there exists a basic single-
tape (deterministic) TM that 
1) Decides , and
2) Runs in space 
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How does space relate to time?
Which of the following is true for every function

?

a)

b)

c)
d) None of the above
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Back to our example
௠ ௠

𝑀 = “On input 𝑤:
1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:
Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

Theorem: Let be a function. Every multi-tape 
TM running in space has an equivalent single-tape 
TM running in space 
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Hierarchy Theorems
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More time, more problems
We know, e.g., that ଶ ଷ

(Anything we can do in quadratic time we can do in cubic time)

Question: Are there problems that we can solve in cubic time 
that we cannot solve in quadratic time?

Theorem: There is a language ଷ , 
but ଶ
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“Time hierarchy”: 
ଶ ଷ ସ



Diagonalization redux
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ସ ?ଷ ?ଶ ?ଵ ?TM 

YYNYଵ

YYNNଶ

NYYYଷ

NYNNସ

…

…

ଶ.ହ

?



An explicit separating language
Theorem:

ଶ.ହ

is in ଷ , but not in ଶ

Proof Sketch: In ଷ

On input :
1.  Simulate on input for ଶ.ହ steps
2.  If accepts, reject. If rejects or did not yet 

halt, accept.
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An explicit separating language
Theorem:

ଶ.ହ

is in ଷ , but not in ଶ

Proof Sketch: Not in ଶ

Suppose for contradiction that decides in time ଶ
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Time and space hierarchy theorems
• For every* function there exists a language 

decidable in time, but not in ௧ ௡
୪୭୥ ௧ ௡

time. 

• For every* function there exists a language 
decidable in space, but not in space. 

*“time constructible” and “space constructible”, respectively
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Complexity Class 
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Time and space complexity
The basic questions

1. How do we measure complexity? 

2. Asymptotic notation

3. How robust is the TM model when we care about 
measuring complexity?

4. How do we mathematically capture our intuitive 
notion of “efficient algorithms”?
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Complexity class 
Definition: is the class of languages decidable in 
polynomial time on a basic single-tape (deterministic) TM

௞ஶ
௞ୀଵ

• Class doesn’t change if we substitute in another 
reasonable deterministic model (Extended Church-Turing)
• Cobham-Edmonds Thesis: Roughly captures class of 

problems that are feasible to solve on computers
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A note about encodings
We’ll still use the notation for “any reasonable” 
encoding of the input to a TM…but now we have to be 
more careful about what we mean by “reasonable”

How long is the encoding of a -vertex, -edge graph…
… as an adjacency matrix?
… as an adjacency list?

How long is the encoding of a natural number 
… in binary?
… in decimal?
… in unary?
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Describing and analyzing polynomial-time 
algorithms

• Due to Extended Church-Turing Thesis, we can still use 
high-level descriptions on multi-tape machines
• Polynomial-time is robust under composition: 

executions of -time subroutines run on -
size inputs gives an algorithm running in time.

Can freely use algorithms we’ve seen before as 
subroutines if we’ve analyzed their runtime

• Need to be careful about size of inputs! (Assume inputs 
represented in binary unless otherwise stated.)
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