
BU CS 332 – Theory of Computation

Lecture 19:
• Time/Space Complexity
• Time/Space Hierarchies
• Complexity Class P

Reading:
Sipser Ch 9.1, 7.2

Mark Bun
April 10, 2024

https://forms.gle/tPzCFSW4dszu5dQB8

Last Time
• Asymptotic notation
Big-Oh: if there exist ଴ such that

for all ଴

Little-Oh: if for every there exists ଴
such that for all ଴

• Analyzing time/space usage of TMs (algorithms)
4/10/2024 CS332 - Theory of Computation 2

Time complexity
Time complexity of a TM (algorithm) = maximum number of
steps it takes on a worst-case input

Formally: Let . A TM runs in time if for
every and every input ௡, halts on within at most

steps

A language if there exists a basic single-tape
(deterministic) TM that
1) Decides , and
2) Runs in time

4/10/2024 CS332 - Theory of Computation 3

Time class containment
If , then which of the following
statements is always true?

a)

b)

c)
d) None of the above

4/10/2024 CS332 - Theory of Computation 4

Example
𝐴 ൌ 0௠1௠ 𝑚 ൒ 0ሽ
𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:
Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• runs in time ଶ

• Is there a faster algorithm?

4/10/2024 CS332 - Theory of Computation 5

Example
𝐴 ൌ 0௠1௠ 𝑚 ൒ 0ሽ
𝑀′ = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:
• Reject if the total number of 0’s and 1’s remaining is odd
• Cross off every other 0 and every other 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• Running time of :

• Is there a faster algorithm?

4/10/2024 CS332 - Theory of Computation 6

Example
Running time of :

Theorem (Sipser, Problem 7.49): If can be decided in
time on a basic single-tape TM, then is

regular

4/10/2024 CS332 - Theory of Computation 7

Does it matter that we’re using the 1-tape
model for this result?
It matters: 2-tape TMs can decide faster

𝑀′′ = “On input 𝑤:
1. Scan input and reject if not of the form 0∗1∗

2. Copy 0’s to tape 2
3. Scan tape 1. For each 1 read, cross off a 0 on tape 2
4. If 0’s on tape 2 finish at same time as 1’s on tape 1, accept.

Otherwise, reject.”

Analysis: is decided in time on a 2-tape TM
Moral of the story (part 1): Unlike decidability, time
complexity depends on the TM model

4/10/2024 CS332 - Theory of Computation 8

How much does the model matter?
Theorem: Let be a function. Every multi-tape
TM running in time has an equivalent single-tape TM
running in time ଶ

Proof idea:
We already saw how to simulate a multi-tape TM with a
single-tape TM
Need a runtime analysis of this construction

Moral of the story (part 2): Time complexity doesn’t
depend too much on the TM model (as long as it’s
deterministic, sequential)

4/10/2024 CS332 - Theory of Computation 9

Single vs. Multi-Tape
Theorem: Let be a function. Every multi-tape
TM running in time has an equivalent single-tape TM
running in time ଶ

4/10/2024 CS332 - Theory of Computation 10

Suppose is decidable in time ଶ on a 42-tape TM.
What is the best upper bound you can give on the
runtime of a basic single-tape TM deciding ?
a) ଶ

b) ସ

c) ଼ସ

d) ைሺ௡ሻ

Single vs. Multi-Tape
Theorem: Let be a function. Every multi-tape
TM running in time has an equivalent single-tape TM
running in time ଶ

Proof idea:
We already saw how to simulate a multi-tape TM with a
single-tape TM
Need a runtime analysis of this construction

4/10/2024 CS332 - Theory of Computation 11

Simulating Multiple Tapes
(Implementation-Level Description)

On input ଵ ଶ ௡
1. Format tape into ଵ ଶ ௡
2. For each move of :

Scan left-to-right, finding current symbols
Scan left-to-right, writing new symbols,
Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank
If a tape head goes off left end, move back right

4/10/2024 CS332 - Theory of Computation 12

Single vs. Multi-Tape
Theorem: Let be a function. Every multi-tape
TM running in time has an equivalent single-tape TM
running in time ଶ

Proof: Time analysis of simulation
• Time to initialize (i.e., format tape):
• Time to simulate one step of multi-tape TM:

• Number of multi-tape steps to simulate:
Total time:

4/10/2024 CS332 - Theory of Computation 13

Extended Church-Turing Thesis
Every “reasonable” (physically realizable) model of
computation can be simulated by a basic, single-tape TM
with only a polynomial slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs
Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation,
parallel computation, DNA computing, quantum
computation

4/10/2024 CS332 - Theory of Computation 14

Space complexity
Space complexity of a TM (algorithm) = maximum number of
tape cells it uses on a worst-case input

Formally: Let . A TM runs in space if for
every and every input ௡, halts on using at most

tape cells

A language if there exists a basic single-
tape (deterministic) TM that
1) Decides , and
2) Runs in space

4/10/2024 CS332 - Theory of Computation 15

How does space relate to time?
Which of the following is true for every function

?

a)

b)

c)
d) None of the above

4/10/2024 CS332 - Theory of Computation 16

Back to our example
௠ ௠

𝑀 = “On input 𝑤:
1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:
Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

Theorem: Let be a function. Every multi-tape
TM running in space has an equivalent single-tape
TM running in space

4/10/2024 CS332 - Theory of Computation 17

Hierarchy Theorems

4/10/2024 CS332 - Theory of Computation 18

More time, more problems
We know, e.g., that ଶ ଷ

(Anything we can do in quadratic time we can do in cubic time)

Question: Are there problems that we can solve in cubic time
that we cannot solve in quadratic time?

Theorem: There is a language ଷ ,
but ଶ

4/10/2024 CS332 - Theory of Computation 19

“Time hierarchy”:
ଶ ଷ ସ

Diagonalization redux

4/10/2024 CS332 - Theory of Computation 20

ସ ?ଷ ?ଶ ?ଵ ?TM

YYNYଵ

YYNNଶ

NYYYଷ

NYNNସ

…

…

ଶ.ହ

?

An explicit separating language
Theorem:

ଶ.ହ

is in ଷ , but not in ଶ

Proof Sketch: In ଷ

On input :
1. Simulate on input for ଶ.ହ steps
2. If accepts, reject. If rejects or did not yet

halt, accept.

4/10/2024 CS332 - Theory of Computation 21

An explicit separating language
Theorem:

ଶ.ହ

is in ଷ , but not in ଶ

Proof Sketch: Not in ଶ

Suppose for contradiction that decides in time ଶ

4/10/2024 CS332 - Theory of Computation 22

Time and space hierarchy theorems
• For every* function there exists a language

decidable in time, but not in ௧ ௡
୪୭୥ ௧ ௡

time.

• For every* function there exists a language
decidable in space, but not in space.

*“time constructible” and “space constructible”, respectively

4/10/2024 CS332 - Theory of Computation 23

Complexity Class

4/10/2024 CS332 - Theory of Computation 24

Time and space complexity
The basic questions

1. How do we measure complexity?

2. Asymptotic notation

3. How robust is the TM model when we care about
measuring complexity?

4. How do we mathematically capture our intuitive
notion of “efficient algorithms”?

4/10/2024 CS332 - Theory of Computation 25

Complexity class
Definition: is the class of languages decidable in
polynomial time on a basic single-tape (deterministic) TM

௞ஶ
௞ୀଵ

• Class doesn’t change if we substitute in another
reasonable deterministic model (Extended Church-Turing)
• Cobham-Edmonds Thesis: Roughly captures class of

problems that are feasible to solve on computers

4/10/2024 CS332 - Theory of Computation 26

A note about encodings
We’ll still use the notation for “any reasonable”
encoding of the input to a TM…but now we have to be
more careful about what we mean by “reasonable”

How long is the encoding of a -vertex, -edge graph…
… as an adjacency matrix?
… as an adjacency list?

How long is the encoding of a natural number
… in binary?
… in decimal?
… in unary?

4/10/2024 CS332 - Theory of Computation 27

Describing and analyzing polynomial-time
algorithms

• Due to Extended Church-Turing Thesis, we can still use
high-level descriptions on multi-tape machines
• Polynomial-time is robust under composition:

executions of -time subroutines run on -
size inputs gives an algorithm running in time.

Can freely use algorithms we’ve seen before as
subroutines if we’ve analyzed their runtime

• Need to be careful about size of inputs! (Assume inputs
represented in binary unless otherwise stated.)

4/10/2024 CS332 - Theory of Computation 28

