BU CS 332 – Theory of Computation

https://forms.gle/nUoNjcqHxqVZm8nk6

Lecture 21:

• NP: Nondeterminstic TMs vs. Deterministic Verifiers

Reading: Sipser Ch 7.3-7.4

Mark BunApril 22, 2024

Nondeterministic time and NP

Let $f: \mathbb{N} \to \mathbb{N}$

A NTM M runs in time $f(n)$ if on every input $w \in \Sigma^n$,

```
M halts on w within at most f(n) steps on every computational branch
```
NTIME($f(n)$) is a class (i.e., set) of languages:

A language $A \in \text{NTIME}(f(n))$ if there exists an NTM M that

- 1) Decides A , and
- 2) Runs in time $O(f(n))$

Definition: NP is the class of languages decidable in polynomial time on a nondeterministic TM

```
\sum_{k=1}^{\infty} NTIME(n^k
```
Speeding things up with nondeterminism $2 (V,E)$

 $TRIANGLE = \{(G) | digraph G contains a triangle\}$

Deterministic algorithm:

Nondeterministic algorithm:

Nondeterministic algorithm:

Nondeterministic algorithm:

O ($\iota_{\mathbf{y}}$ $|v|$)
 $\iota_{\mathbf{y}}$ $\iota_{\mathbf{y}}$ $\iota_{\mathbf{y}}$ $\iota_{\mathbf{y}}$ $\iota_{\mathbf{y}}$ $\iota_{\mathbf{y}}$ $\iota_{\mathbf{y}}$ $\iota_{\mathbf{y}}$ $\iota_{\$ Check if (v,v) , (v,u) , and (w,u) are all in E

Hamiltonian Path

 $HAMPATH = \{(G, s, t) | G \text{ is a directed graph and there}\}$ is a path from s to t that passes through every vertex exactly once}

$HAMPATH \in NP$

 C_1, C_2, \ldots, C_n
0101 / 1082 / 11/10820

photo deal YAA.

The following **nondeterministic** algorithm decides $HAMPATH$ in polynomial time:

On input $\langle G, s, t \rangle$: (Vertices of G are numbers 1, ..., k)

1. **Nondeterministically** guess a sequence

 $c_1, c_2, ..., c_k$ of numbers

- 2. Check that c_1 , c_2 , ..., c_k is a permutation: Every $\overline{}$ number $1, \overline{\ldots}, \overline{k}$ appears exactly once $o(\mu_{\text{low}})$ fie
- 3. Check that $c_1 = s$, $c_k = t$, and there is an edge $_1 \circ$, \circ_k from every c_i to c_{i+1}
- 4. Accept if all checks pass, otherwise, reject.

Analyzing the algorithm

Need to check:

1) Correctness
- If \angle 6, 5, t) \in HHMPATH: $\frac{3}{5}$ a sequence of vertices $c_1, ..., c_k$ that 5 Branch of completion the C1,-2 h was greased leads to acupane - If <6,5,+7 & MAMMMTH: No sequence of which consider family a Mam path => BBg sequence will either fail to be a path of fail to be a permutation of [le] 2) Running time => Ray boach will lead to sere deck tailing.

\n $O(u \, \log u)$ \n	\n $\frac{O(u^2 \log(\log u))}{\log(\log u)}$ \n	\n $\frac{O(u^2 \log(\log u))}{\log(\log u)}$ \n											
\n $\frac{1}{\log(\log u)}$ \n	\n $\frac{1}{\log(\log u)}$ \n												
\n $\frac{1}{\log(\log u)}$ \n	\n $\frac{1}{\log(\log u)}$ \n												
\n $\frac{1}{\log(\log u)}$ \n	\n $\frac{1}{\log(\log u)}$ \n												
\n $\frac{1}{\log(\log u)}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n											
\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n											
\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{1}{\log(\log(u))}$ \n	\n $\frac{$

Nondeterministically guessing, then checking $W = (6, 5, t)$ How did we design an NTM for HAMPATH?

- Given a candidate path, it is easy (poly-time) to check whether this path is a Hamiltonian path
- We designed a poly-time NTM by nondeterministically guessing this path and then deterministically checking it
- Lots of problems have this structure (CLIQUE, 3-COLOR, COMPOSITE,…). They might be hard to solve, but a candidate solution is easy to check.

General structure: $w \in L$ if and only if there exists a nondeterministically guessable, but deterministically checkable

An alternative characterization of

"Languages with polynomial-time verifiers"

A verifier for a language L is a deterministic algorithm such that $w \in L$ iff there exists a string c such that $V(\langle w, c \rangle)$ accepts "Certficte" "Winss" poof"

Running time of a verifier is only measured in terms of $|w|$

 V is a polynomial-time verifier if it runs in time polynomial in $|w|$ on every input $\langle w, c \rangle$

(Without loss of generality, |c| is polynomial in $|w|$, i.e., (k) for some constant k)

 $HAMPATH$ has a polynomial-time verifier
Certificate $c:$ $c_1, ... c_n$ representing an alreged Ham poth Certificate c : $C_{1},...,C_{k}$ Runtine: Verifier $V\colon$ On input $\langle G, s, t; c \rangle$: (Vertices of G are numbers $1,...,k$) 1. Check that c_1 , c_2 , ..., c_k is a permutation: Every number $1, ..., k$ appears exactly once 2. Check that $c_1 = s$, $c_k = t$, and there is an edge from every c_i to c_{i+1} 3. Accept if all checks pass, otherwise, reject.

concehere: -If $\angle 6,3,17$ = Ham part, then c repeating a Ham path from s to

t in 6 cannels V to adopt an $\angle 6,5,1,6$ - If (6,5, E) of MAMAM, the no sequence c is a valid blam poth of V will gird on L6, s, t, c).

NP is the class of languages with polynomialtime verifiers

Theorem: A language $L \in \text{NP}$ iff there is a polynomialtime verifier for L

Alternative proof of $NP \subseteq EXP$
wel => \exists continuite c c.t. $V(C^{\prime}, c)$ acupts

One can prove $NP \subseteq EXP$ as follows. Let V be a verifier for an NP language L running in time $T(n)$. We can construct a $O(T(n))$ time algorithm for L as follows.

 $udL \Rightarrow m(w)$ rejects

On input $\langle w, c \rangle$, run V on $\langle w, c \rangle$ and output the result

- On input w, run V on all possible $\langle w, c \rangle$, where "c is a certificate string". Accept if any run accepts.
- On input w, run V on all possible $\langle w, c \rangle$, where c is a CIT IIIput *W*, I and *Y* CIT and *Y* Control (W). Accept if any run Rustic T(IW) accepts.
- d) On input w, run V on all possible $\langle x, c \rangle$, where x is a string of length $|w|$ and c is a certificate of length at most $T(|w|)$. Accept if any run accepts.

NP is the class of languages with polynomialtime verifiers

Theorem: A language $L \in \text{NP}$ iff there is a polynomialtime verifier for *L*

Proof: \Leftarrow Let L have a time- $T(n)$ verifier

Idea: Design NTM N for L that nondeterministically Conceptes guesses a certificate N NT M

2. Teless pdg time because V does

NP is the class of languages with polynomialtime verifiers \Rightarrow Let L be decided by an NTM N running in time $T(n)$ and making up to b nondeterministic choices in each step Idea: Design verifier V for L where certificate is sequence of "good" nondeterministic choices
Certificat: C1, C-r...1) ESL) computation MTM Certificate: C1, ..., CTCIWI) Certifiede C. indicates which of to chases to make at tire stop i $Verf.er V.$ on input Lw, C): all R. ni de ci 1. Smalate N on infut w C as 化 uin nordetermatic choices takes T(IWI) Runtive. **CkD** 2. A cept if acepts, reject if rejects. fhe_j which is paymental $when T.3.$

WARNING: Don't mix-and-match the NTM and verifier interpretations of To show a language L is in NP, do exactly one:

1) Exhibit a poly-time NTM for L $N =$ "On input w: <Do some nondeterministic stuff>…"

OR

2) Exhibit a poly-time (deterministic) verifier for L $V =$ "On input w and certificate c : <Do some deterministic stuff>…"

Examples of NP languages: SAT

"Is there an assignment to the variables in a logical formula that make it evaluate to true?"

- Boolean variable: Variable that can take on the value true/false (encoded as $0/1$) $\boldsymbol{\mu}$, $\boldsymbol{\mu}$, $\boldsymbol{\nu}$,
- Boolean operations:
- Boolean formula: Expression made of Boolean variables and operations. Ex: $\varphi(x_1, x_2, x_3) = \; (x_1 \vee \overline{x_2}) \wedge x_3$
- An assignment of 0s and 1s to the variables satisfies a formula φ if it makes the formula evaluate to 1 150 151 = $(0,0,1)$ (OVI) 1 = 1
- A formula φ is satisfiable if there exists an assignment that satisfies it

Examples of NP languages: SAT Ex: $(x_1 \vee \overline{x_2}) \wedge x_3$ $x_i = 0$, $x_i = 0$, $x_i = 1$
Satisfiable?

Ex: $(x_1 \vee x_2) \wedge \overline{x_1} \wedge \overline{x_2}$ Not catsformed Satisfiable?

 $SAT = {\langle \varphi \rangle | \varphi}$ is a satisfiable formula} Claim: $SAT \in NP$