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Nondeterministic time and NP

letf: N> N
ANTM M runs in time f(n) if on every input w € X",

M halts on w within at most f (n) steps on every
computational branch

NTIME(f (n)) is a class (i.e., set) of languages:
A language A € NTIME(f (n)) if there exists an NTM M that

1) Decides 4, and
2) Runsintime O(f(n))

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM

NP = Uy, NTIME(n%)
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Speeding things up with nondeterminism
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Hamiltonian Path

HAMPATH = {{(G, s, t) |G is a directed graph and there

is a path from s to t that passes
through every vertex exactly once}
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m gooA .... MWYY

The following nondeterministic algorithm decides
HAMPATH in polynomial time:

*\73'*‘\&% K* ¥V o don
(\’\
On input (G, s, t): (Vertices of G are numbers 1, ..., k)
1. Nondeterministically guess a sequence
€1, Cz, o, Cr Of NUMbers 1, ...,k o(w Leg &)

2. Check that ¢4, C, ..., Cg is @ permutation: Every
number 1, ..., k appears exactly once 0(((5-‘;;‘;‘)*“

3. Check that c; = s, ¢, = t, and there is an edge

. . o) %45 &a dede
from every c; to c;4 4 (1 O0E) tie pr che

4. Accept if all checks pass, otherwise, reject.
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Analyzing the algorithm

Need to check:

1) Correctness
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Nondeterministically guessing, then checking
. . W= st
How did we design an NTM for HAMPATH?

e Given a candidate path, it is easy (poly-time) to check
whether this path is a Hamiltonian path

* We designed a poly-time NTM by nondeterministically
guessing this path and then deterministically checking it

* Lots of problems have this structure (CLIQUE, 3-COLOR,
COMPOSITE,...). They might be hard to solve, but a
candidate solution is easy to check.

General structure: w € L if and only if there exists a
nondeterministically guessable, but determmlstlcally
checkable ¢




An alternative characterization of NP

“Languages with polynomial-time verifiers”

A verifier for a language L is a deterministic algorithm IV
such that]W/E_L\lff there exists a string ¢ such that
V({w, c)) accepts (ol Cwhos e

Running time of a verifier is only measured in terms of |w|

V is a polynomial-time verifier if it runs in time polynomial
in |w| on every input (w, c)

(Without loss of generality, |c| is polynomial in |w], i.e.,
Ic| = O(|w|*) for some constant k)
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HAMPATH has a polynomial-time verifier

Certificate ¢:  C,, .,Gu €peot™g o aleged Haw teth
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Verifier V: 4 ¥ z“’wK ane 19wy sw vt

Oninput (G, s, t;c): (Vertices of G are numbers 1, \Zlg(. o
L .
1. Check that ¢4, ¢5, ..., Cx is @ permutation: Every

number 1, ..., k appears exactly once

2. Check that ¢; = s, ¢, = t, and there is an edge
from every c¢; to ¢; 41

3. Accept if all checks pass, otherwise, reject.
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NP is the class of languages with polynomial-
time verifiers

Theorem: A language L € NP iff there is a polynomial-
time verifier for L
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Alternative proof of NP

wel 2 T cerbek € b V(LY 47]§
wél = ¥ cekfives ¢ V(&) rexch

One can prove NP € EXP as follows. Let VV be a verifier for an
NP Ian)%uage L running in time T (n). We can constructa

20 T(M) time algorithm for L as follows. .
S M oveL O M) awgts

WL D n(w) rejech
)() On input (w, c¢), run V on (w, ¢) and output the result

7&[ On input w, run V on all possible (w, ¢}, wherec is a )
certificate string’ Accept if any run accepts. fffh"&, {;‘

On input w, run V on all possible (w, c), where cisa*® Wm
certificate of length at most T (|jw]). Accepcfabfu%{\y run

accepts. Lyntie Tuul)‘
P \ﬂ\# corlift.afesy +»

On input w, run V on all p055||5re (x, c) wheré X is a strin
of length | W| and c is a certificate of length at most
T(|W|) Accept if any run accepts.




NP is the class of languages with polynomial-
time verifiers
Theorem: A language L € NP iff there is a polynomial-
time verifier for L
Proof: < Let L have a time-T (n) verifier V({w, c))

ldea: Design NTM N for L that nondeterministically
guesses a certificate
NTA N
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NP is the class of languages with polyr}omLaI-
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WARNING: Don’t mix-and-match the NTM and

verifier interpretations of NP
To show a language L is in NP, do exactly one:

1) Exhibit a poly-time NTM for L
N =“Oninput w:
<Do some nondeterministic stuff>...”
OR

2) Exhibit a poly-time (deterministic) verifier for L

V' = “On input w and certificate c:
<Do some deterministic stuff>...”
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Examples of NP languages: SAT

“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”

 Boolean variable: Variable that can take on the value
true/false (encoded as 0/1) #.4,% A, 73, L

* Boolean operations: A (AND), v (OR), = (NOT)

* Boolean formula: Expression made of Boolean variables
and operations. Ex: @(xq,Xx5,x3) = (X1 VX3) A X3

* An assignment of0s and 1s to the variables satisfies a

formula ¢ if it makes the formula evaluate to 1
1> 0 T371(=n ¢(0,0,02 (OVI) Al =

2~%©

* Aformula ¢ is
that satisfies it

tisfiable if there exists an assignment
N galsfude leawse 0,01 cdsheS #.
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Examples of NP languages: SAT

Ex: (x1 VX3) A X3 1,2 0, 1% T3t Satisfiable?
colstes Hho
Ex: (X1 VX2) AX{ A \ X5 Not “cakshahie_ Satisfiable?
= X

SAT = {{(@)|@ is a satisfiable formula}
Claim: SAT € NP

4/22/2024 CS332 - Theory of Computation 16



