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Nondeterministic time and NP
Let 𝑓𝑓 ∶  ℕ →  ℕ
A NTM 𝑀𝑀 runs in time 𝑓𝑓(𝑛𝑛) if on every input 𝑤𝑤 ∈ Σ𝑛𝑛, 
𝑀𝑀 halts on 𝑤𝑤 within at most 𝑓𝑓(𝑛𝑛) steps on every 
computational branch

NTIME(𝑓𝑓(𝑛𝑛)) is a class (i.e., set) of languages:
A language 𝐴𝐴 ∈ NTIME(𝑓𝑓(𝑛𝑛)) if there exists an NTM 𝑀𝑀 that 
 1) Decides 𝐴𝐴, and
 2) Runs in time 𝑂𝑂(𝑓𝑓(𝑛𝑛))

Definition: NP is the class of languages decidable in 
polynomial time on a nondeterministic TM
     NP =  ⋃𝑘𝑘=1

∞ NTIME(𝑛𝑛𝑘𝑘)
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Speeding things up with nondeterminism
𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇  digraph 𝑇𝑇 contains a triangle}

Deterministic algorithm:

Nondeterministic algorithm:
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Hamiltonian Path
𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻 = 𝑇𝑇, 𝑠𝑠, 𝑡𝑡  𝑇𝑇 is a directed graph and there 
                                             is a path from 𝑠𝑠 to 𝑡𝑡 that passes 

 through every vertex exactly once}
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𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻 ∈ NP 

The following nondeterministic algorithm decides 
𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻 in polynomial time:

On input 𝑇𝑇, 𝑠𝑠, 𝑡𝑡 :    (Vertices of 𝑇𝑇 are numbers 1, … , 𝑘𝑘)
 1. Nondeterministically guess a sequence
 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘 of numbers 1, … , 𝑘𝑘
 2. Check that 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘 is a permutation: Every   

     number 1, … , 𝑘𝑘 appears exactly once 
 3. Check that 𝑐𝑐1 = 𝑠𝑠, 𝑐𝑐𝑘𝑘 = 𝑡𝑡, and there is an edge    

     from every 𝑐𝑐𝑖𝑖 to 𝑐𝑐𝑖𝑖+1
 4. Accept if all checks pass, otherwise, reject.
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Analyzing the algorithm
Need to check:
1) Correctness

2)  Running time

4/22/2024 CS332 - Theory of Computation 6



Nondeterministically guessing, then checking

How did we design an NTM for HAMPATH?
• Given a candidate path, it is easy (poly-time) to check 

whether this path is a Hamiltonian path
• We designed a poly-time NTM by nondeterministically 

guessing this path and then deterministically checking it
• Lots of problems have this structure (CLIQUE, 3-COLOR, 

COMPOSITE,…). They might be hard to solve, but a 
candidate solution is easy to check.

General structure: 𝑤𝑤 ∈ 𝑇𝑇  if and only if there exists a 
nondeterministically guessable, but deterministically 
checkable 𝑐𝑐
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An alternative characterization of NP
“Languages with polynomial-time verifiers”
A verifier for a language 𝑇𝑇 is a deterministic algorithm 𝑉𝑉 
such that 𝑤𝑤 ∈ 𝑇𝑇 iff there exists a string 𝑐𝑐 such that 
𝑉𝑉( 𝑤𝑤, 𝑐𝑐 ) accepts

Running time of a verifier is only measured in terms of 𝑤𝑤

𝑉𝑉 is a polynomial-time verifier if it runs in time polynomial 
in |𝑤𝑤| on every input 𝑤𝑤, 𝑐𝑐
(Without loss of generality, |𝑐𝑐| is polynomial in |𝑤𝑤|, i.e., 
𝑐𝑐 = 𝑂𝑂(|𝑤𝑤|𝑘𝑘) for some constant 𝑘𝑘)
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𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻 has a polynomial-time verifier 
Certificate 𝑐𝑐:

Verifier 𝑉𝑉:
On input 𝑇𝑇, 𝑠𝑠, 𝑡𝑡; 𝑐𝑐 :    (Vertices of 𝑇𝑇 are numbers 1, … , 𝑘𝑘)
 1. Check that 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘 is a permutation: Every   

     number 1, … , 𝑘𝑘 appears exactly once 
 2. Check that 𝑐𝑐1 = 𝑠𝑠, 𝑐𝑐𝑘𝑘 = 𝑡𝑡, and there is an edge    

     from every 𝑐𝑐𝑖𝑖 to 𝑐𝑐𝑖𝑖+1
 3. Accept if all checks pass, otherwise, reject.
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NP is the class of languages with polynomial-
time verifiers
Theorem: A language 𝑇𝑇 ∈ NP iff there is a polynomial-
time verifier for 𝑇𝑇
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Alternative proof of NP ⊆ EXP

One can prove NP ⊆ EXP as follows. Let 𝑉𝑉 be a verifier for an 
NP language 𝑇𝑇 running in time 𝑇𝑇(𝑛𝑛). We can construct a 
2𝑂𝑂 𝑇𝑇 𝑛𝑛  time algorithm for 𝑇𝑇 as follows.

a) On input 〈𝑤𝑤, 𝑐𝑐〉, run 𝑉𝑉 on 〈𝑤𝑤, 𝑐𝑐〉 and output the result
b) On input 𝑤𝑤, run 𝑉𝑉 on all possible 〈𝑤𝑤, 𝑐𝑐〉, where 𝑐𝑐 is a 

certificate string. Accept if any run accepts.
c) On input 𝑤𝑤, run 𝑉𝑉 on all possible 〈𝑤𝑤, 𝑐𝑐〉, where 𝑐𝑐 is a 

certificate of length at most 𝑇𝑇 𝑤𝑤 . Accept if any run 
accepts.

d) On input 𝑤𝑤, run 𝑉𝑉 on all possible 〈𝑥𝑥, 𝑐𝑐〉, where 𝑥𝑥 is a string 
of length |𝑤𝑤| and 𝑐𝑐 is a certificate of length at most 
𝑇𝑇 𝑤𝑤 . Accept if any run accepts.
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NP is the class of languages with polynomial-
time verifiers
Theorem: A language 𝑇𝑇 ∈ NP iff there is a polynomial-
time verifier for 𝑇𝑇
Proof:  ⇐ Let 𝑇𝑇 have a time-𝑇𝑇(𝑛𝑛) verifier 𝑉𝑉( 𝑤𝑤, 𝑐𝑐 )
Idea: Design NTM 𝑇𝑇 for 𝑇𝑇 that nondeterministically 
guesses a certificate
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NP is the class of languages with polynomial-
time verifiers
⇒ Let 𝑇𝑇 be decided by an NTM 𝑇𝑇 running in time 𝑇𝑇(𝑛𝑛) 

and making up to 𝑏𝑏 nondeterministic choices in each step
Idea: Design verifier 𝑉𝑉 for 𝑇𝑇 where certificate is sequence 
of “good” nondeterministic choices

4/22/2024 CS332 - Theory of Computation 13



WARNING: Don’t mix-and-match the NTM and 
verifier interpretations of NP
To show a language 𝑇𝑇 is in NP, do exactly one:

1) Exhibit a poly-time NTM for 𝑇𝑇
 𝑇𝑇 = “On input 𝑤𝑤:
 <Do some nondeterministic stuff>…”
OR

2)   Exhibit a poly-time (deterministic) verifier for 𝑇𝑇
 𝑉𝑉 = “On input 𝑤𝑤 and certificate 𝑐𝑐:
 <Do some deterministic stuff>…”
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Examples of NP languages: SAT
“Is there an assignment to the variables in a logical 
formula that make it evaluate to true?”
• Boolean variable: Variable that can take on the value 

true/false (encoded as 0/1)
• Boolean operations: ∧ AND , ∨ OR , ¬ (NOT)
• Boolean formula: Expression made of Boolean variables 

and operations. Ex: 𝜑𝜑 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 =  (𝑥𝑥1 ∨ 𝑥𝑥2) ∧ 𝑥𝑥3
• An assignment of 0s and 1s to the variables satisfies a 

formula 𝜑𝜑 if it makes the formula evaluate to 1

• A formula 𝜑𝜑 is satisfiable if there exists an assignment 
that satisfies it
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Examples of NP languages: SAT
Ex: (𝑥𝑥1 ∨ 𝑥𝑥2) ∧ 𝑥𝑥3     Satisfiable?

Ex: (𝑥𝑥1 ∨ 𝑥𝑥2) ∧ 𝑥𝑥1 ∧ 𝑥𝑥2    Satisfiable?

𝑆𝑆𝐴𝐴𝑇𝑇 = { 𝜑𝜑 |𝜑𝜑 is a satisfiable formula}
Claim: 𝑆𝑆𝐴𝐴𝑇𝑇 ∈ NP
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Examples of NP languages: Traveling 
Salesperson
“Given a list of cities and distances between them, is 
there a ‘short’ tour of all of the cities?”
More precisely: Given
• A number of cities 𝑚𝑚
• A function 𝐷𝐷: {1, … ,𝑚𝑚} 2 → ℕ giving the distance 

between each pair of cities
• A distance bound 𝐵𝐵

𝑇𝑇𝑆𝑆𝐻𝐻 = { 𝑚𝑚,𝐷𝐷,𝐵𝐵 |∃ a tour visiting every city 
                                          with length ≤ 𝐵𝐵}
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P vs. NP
Question: Does P = NP?
    Philosophically: Can every problem with an efficiently    
 verifiable solution also be solved efficiently?

 A central problem in mathematics
    and computer science
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In a world where P = NP:
• Many important decision problems can be solved in 

polynomial time (𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻, 𝑆𝑆𝐴𝐴𝑇𝑇, 𝑇𝑇𝑆𝑆𝐻𝐻, etc.)

• Many search problems can be solved in polynomial time 
(e.g., given a natural number, find a prime factorization)

• Many optimization problems can be solved in polynomial 
time (e.g., find the lowest energy conformation of a 
protein)
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In a world where P = NP:
• Secure cryptography (as we know it) becomes impossible
   An NP search problem: Given a ciphertext 𝑐𝑐, find a plaintext 
𝑚𝑚 and encryption key 𝑘𝑘 that would encrypt to 𝑐𝑐

• AI / machine learning become easy: Identifying a consistent 
classification rule is an NP search problem

• Finding mathematical proofs becomes easy: NP search 
problem: Given a mathematical statement 𝑆𝑆 and length 
bound 𝑘𝑘, is there a proof of 𝑆𝑆 with length at most 𝑘𝑘?

General consensus: P ≠ NP
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NP-Completeness
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Understanding the P vs. NP question
Most believe P ≠ NP, but we are very far from proving it

Question 1: How can studying specific computational 
problems help us get a handle on resolving P vs. NP?
Question 2: What would P ≠ NP allow us to conclude 
about specific problems we care about?

Idea: Identify the “hardest” problems in NP
Languages 𝑇𝑇 ∈ NP such that         𝑇𝑇 ∈ P iff    P = NP
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Recall: Mapping reducibility
Definition: 
A function 𝑓𝑓:Σ∗ → Σ∗ is computable if there is a TM 𝑀𝑀 
which, given as input any 𝑤𝑤 ∈ Σ∗, halts with only 𝑓𝑓(𝑤𝑤) on 
its tape.

Definition: 
Language 𝐴𝐴 is mapping reducible to language 𝐵𝐵, written

𝐴𝐴 ≤m 𝐵𝐵
if there is a computable function 𝑓𝑓:Σ∗ → Σ∗ such that for 
all strings 𝑤𝑤 ∈ Σ∗, we have 𝑤𝑤 ∈ 𝐴𝐴 ⟺ 𝑓𝑓(𝑤𝑤) ∈ 𝐵𝐵 
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Polynomial-time reducibility
Definition: 
A function 𝑓𝑓:Σ∗ → Σ∗ is polynomial-time computable if there 
is a polynomial-time TM 𝑀𝑀 which, given as input any 𝑤𝑤 ∈ Σ∗, 
halts with only 𝑓𝑓(𝑤𝑤) on its tape.

Definition: 
Language 𝐴𝐴 is polynomial-time reducible to language 𝐵𝐵, 
written

𝐴𝐴 ≤p 𝐵𝐵
if there is a polynomial-time computable function 𝑓𝑓:Σ∗ → Σ∗ 
such that for all strings 𝑤𝑤 ∈ Σ∗, we have 𝑤𝑤 ∈ 𝐴𝐴 ⟺ 𝑓𝑓(𝑤𝑤) ∈ 𝐵𝐵 
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Implications of poly-time reducibility
Theorem: If 𝐴𝐴 ≤p 𝐵𝐵 and 𝐵𝐵 ∈ P, then 𝐴𝐴 ∈ P 
Proof: Let 𝑀𝑀 decide 𝐵𝐵 in poly time, and let 𝑓𝑓 be a poly-
time reduction from 𝐴𝐴 to 𝐵𝐵. The following TM decides 𝐴𝐴 
in poly time:
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Is NP closed under poly-time reductions?

If 𝐴𝐴 ≤p 𝐵𝐵 and 𝐵𝐵 is in NP, does that mean 
𝐴𝐴 is also in NP?

a) Yes, the same proof works using NTMs instead of TMs
b) No, because the new machine is an NTM instead of a 

deterministic TM
c) No, because the new NTM may not run in polynomial time
d) No, because the new NTM may accept some inputs it 

should reject
e) No, because the new NTM may reject some inputs it 

should accept
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NP-completeness
Definition: A language 𝐵𝐵 is NP-complete if
 1) 𝐵𝐵 ∈ NP, and
 2) 𝐵𝐵 is NP-hard: Every language 𝐴𝐴 ∈ NP is poly-time 

                             reducible to 𝐵𝐵, i.e., 𝐴𝐴 ≤p 𝐵𝐵
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