
BU CS 332 – Theory of Computation

Lecture 21:
• NP: Nondeterminstic TMs vs.

Deterministic Verifiers

Reading:
Sipser Ch 7.3-7.4

Mark Bun
April 22, 2024

https://forms.gle/nUoNjcqHxqVZm8nk6

https://forms.gle/nUoNjcqHxqVZm8nk6

Nondeterministic time and NP
Let 𝑓𝑓 ∶ ℕ → ℕ
A NTM 𝑀𝑀 runs in time 𝑓𝑓(𝑛𝑛) if on every input 𝑤𝑤 ∈ Σ𝑛𝑛,
𝑀𝑀 halts on 𝑤𝑤 within at most 𝑓𝑓(𝑛𝑛) steps on every
computational branch

NTIME(𝑓𝑓(𝑛𝑛)) is a class (i.e., set) of languages:
A language 𝐴𝐴 ∈ NTIME(𝑓𝑓(𝑛𝑛)) if there exists an NTM 𝑀𝑀 that
 1) Decides 𝐴𝐴, and
 2) Runs in time 𝑂𝑂(𝑓𝑓(𝑛𝑛))

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM
 NP = ⋃𝑘𝑘=1

∞ NTIME(𝑛𝑛𝑘𝑘)

4/22/2024 CS332 - Theory of Computation 2

Speeding things up with nondeterminism
𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇 digraph 𝑇𝑇 contains a triangle}

Deterministic algorithm:

Nondeterministic algorithm:

4/22/2024 CS332 - Theory of Computation 3

Hamiltonian Path
𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻 = 𝑇𝑇, 𝑠𝑠, 𝑡𝑡 𝑇𝑇 is a directed graph and there
 is a path from 𝑠𝑠 to 𝑡𝑡 that passes

 through every vertex exactly once}

4/22/2024 CS332 - Theory of Computation 4

𝑠𝑠 𝑡𝑡

𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻 ∈ NP

The following nondeterministic algorithm decides
𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻 in polynomial time:

On input 𝑇𝑇, 𝑠𝑠, 𝑡𝑡 : (Vertices of 𝑇𝑇 are numbers 1, … , 𝑘𝑘)
 1. Nondeterministically guess a sequence
 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘 of numbers 1, … , 𝑘𝑘
 2. Check that 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘 is a permutation: Every

 number 1, … , 𝑘𝑘 appears exactly once
 3. Check that 𝑐𝑐1 = 𝑠𝑠, 𝑐𝑐𝑘𝑘 = 𝑡𝑡, and there is an edge

 from every 𝑐𝑐𝑖𝑖 to 𝑐𝑐𝑖𝑖+1
 4. Accept if all checks pass, otherwise, reject.

4/22/2024 CS332 - Theory of Computation 5

Analyzing the algorithm
Need to check:
1) Correctness

2) Running time

4/22/2024 CS332 - Theory of Computation 6

Nondeterministically guessing, then checking

How did we design an NTM for HAMPATH?
• Given a candidate path, it is easy (poly-time) to check

whether this path is a Hamiltonian path
• We designed a poly-time NTM by nondeterministically

guessing this path and then deterministically checking it
• Lots of problems have this structure (CLIQUE, 3-COLOR,

COMPOSITE,…). They might be hard to solve, but a
candidate solution is easy to check.

General structure: 𝑤𝑤 ∈ 𝑇𝑇 if and only if there exists a
nondeterministically guessable, but deterministically
checkable 𝑐𝑐

4/22/2024 CS332 - Theory of Computation 7

An alternative characterization of NP
“Languages with polynomial-time verifiers”
A verifier for a language 𝑇𝑇 is a deterministic algorithm 𝑉𝑉
such that 𝑤𝑤 ∈ 𝑇𝑇 iff there exists a string 𝑐𝑐 such that
𝑉𝑉(𝑤𝑤, 𝑐𝑐) accepts

Running time of a verifier is only measured in terms of 𝑤𝑤

𝑉𝑉 is a polynomial-time verifier if it runs in time polynomial
in |𝑤𝑤| on every input 𝑤𝑤, 𝑐𝑐
(Without loss of generality, |𝑐𝑐| is polynomial in |𝑤𝑤|, i.e.,
𝑐𝑐 = 𝑂𝑂(|𝑤𝑤|𝑘𝑘) for some constant 𝑘𝑘)

4/22/2024 CS332 - Theory of Computation 8

𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻 has a polynomial-time verifier
Certificate 𝑐𝑐:

Verifier 𝑉𝑉:
On input 𝑇𝑇, 𝑠𝑠, 𝑡𝑡; 𝑐𝑐 : (Vertices of 𝑇𝑇 are numbers 1, … , 𝑘𝑘)
 1. Check that 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘 is a permutation: Every

 number 1, … , 𝑘𝑘 appears exactly once
 2. Check that 𝑐𝑐1 = 𝑠𝑠, 𝑐𝑐𝑘𝑘 = 𝑡𝑡, and there is an edge

 from every 𝑐𝑐𝑖𝑖 to 𝑐𝑐𝑖𝑖+1
 3. Accept if all checks pass, otherwise, reject.

4/22/2024 CS332 - Theory of Computation 9

NP is the class of languages with polynomial-
time verifiers
Theorem: A language 𝑇𝑇 ∈ NP iff there is a polynomial-
time verifier for 𝑇𝑇

4/22/2024 CS332 - Theory of Computation 10

Alternative proof of NP ⊆ EXP

One can prove NP ⊆ EXP as follows. Let 𝑉𝑉 be a verifier for an
NP language 𝑇𝑇 running in time 𝑇𝑇(𝑛𝑛). We can construct a
2𝑂𝑂 𝑇𝑇 𝑛𝑛 time algorithm for 𝑇𝑇 as follows.

a) On input 〈𝑤𝑤, 𝑐𝑐〉, run 𝑉𝑉 on 〈𝑤𝑤, 𝑐𝑐〉 and output the result
b) On input 𝑤𝑤, run 𝑉𝑉 on all possible 〈𝑤𝑤, 𝑐𝑐〉, where 𝑐𝑐 is a

certificate string. Accept if any run accepts.
c) On input 𝑤𝑤, run 𝑉𝑉 on all possible 〈𝑤𝑤, 𝑐𝑐〉, where 𝑐𝑐 is a

certificate of length at most 𝑇𝑇 𝑤𝑤 . Accept if any run
accepts.

d) On input 𝑤𝑤, run 𝑉𝑉 on all possible 〈𝑥𝑥, 𝑐𝑐〉, where 𝑥𝑥 is a string
of length |𝑤𝑤| and 𝑐𝑐 is a certificate of length at most
𝑇𝑇 𝑤𝑤 . Accept if any run accepts.

4/22/2024 CS332 - Theory of Computation 11

NP is the class of languages with polynomial-
time verifiers
Theorem: A language 𝑇𝑇 ∈ NP iff there is a polynomial-
time verifier for 𝑇𝑇
Proof: ⇐ Let 𝑇𝑇 have a time-𝑇𝑇(𝑛𝑛) verifier 𝑉𝑉(𝑤𝑤, 𝑐𝑐)
Idea: Design NTM 𝑇𝑇 for 𝑇𝑇 that nondeterministically
guesses a certificate

4/22/2024 CS332 - Theory of Computation 12

NP is the class of languages with polynomial-
time verifiers
⇒ Let 𝑇𝑇 be decided by an NTM 𝑇𝑇 running in time 𝑇𝑇(𝑛𝑛)

and making up to 𝑏𝑏 nondeterministic choices in each step
Idea: Design verifier 𝑉𝑉 for 𝑇𝑇 where certificate is sequence
of “good” nondeterministic choices

4/22/2024 CS332 - Theory of Computation 13

WARNING: Don’t mix-and-match the NTM and
verifier interpretations of NP
To show a language 𝑇𝑇 is in NP, do exactly one:

1) Exhibit a poly-time NTM for 𝑇𝑇
 𝑇𝑇 = “On input 𝑤𝑤:
 <Do some nondeterministic stuff>…”
OR

2) Exhibit a poly-time (deterministic) verifier for 𝑇𝑇
 𝑉𝑉 = “On input 𝑤𝑤 and certificate 𝑐𝑐:
 <Do some deterministic stuff>…”

4/22/2024 CS332 - Theory of Computation 14

Examples of NP languages: SAT
“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”
• Boolean variable: Variable that can take on the value

true/false (encoded as 0/1)
• Boolean operations: ∧ AND , ∨ OR , ¬ (NOT)
• Boolean formula: Expression made of Boolean variables

and operations. Ex: 𝜑𝜑 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = (𝑥𝑥1 ∨ 𝑥𝑥2) ∧ 𝑥𝑥3
• An assignment of 0s and 1s to the variables satisfies a

formula 𝜑𝜑 if it makes the formula evaluate to 1

• A formula 𝜑𝜑 is satisfiable if there exists an assignment
that satisfies it

4/22/2024 CS332 - Theory of Computation 15

Examples of NP languages: SAT
Ex: (𝑥𝑥1 ∨ 𝑥𝑥2) ∧ 𝑥𝑥3 Satisfiable?

Ex: (𝑥𝑥1 ∨ 𝑥𝑥2) ∧ 𝑥𝑥1 ∧ 𝑥𝑥2 Satisfiable?

𝑆𝑆𝐴𝐴𝑇𝑇 = { 𝜑𝜑 |𝜑𝜑 is a satisfiable formula}
Claim: 𝑆𝑆𝐴𝐴𝑇𝑇 ∈ NP

4/22/2024 CS332 - Theory of Computation 16

Examples of NP languages: Traveling
Salesperson
“Given a list of cities and distances between them, is
there a ‘short’ tour of all of the cities?”
More precisely: Given
• A number of cities 𝑚𝑚
• A function 𝐷𝐷: {1, … ,𝑚𝑚} 2 → ℕ giving the distance

between each pair of cities
• A distance bound 𝐵𝐵

𝑇𝑇𝑆𝑆𝐻𝐻 = { 𝑚𝑚,𝐷𝐷,𝐵𝐵 |∃ a tour visiting every city
 with length ≤ 𝐵𝐵}

4/22/2024 CS332 - Theory of Computation 17

P vs. NP
Question: Does P = NP?
 Philosophically: Can every problem with an efficiently
 verifiable solution also be solved efficiently?

 A central problem in mathematics
 and computer science

4/22/2024 CS332 - Theory of Computation 18

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

In a world where P = NP:
• Many important decision problems can be solved in

polynomial time (𝐻𝐻𝐴𝐴𝑀𝑀𝐻𝐻𝐴𝐴𝑇𝑇𝐻𝐻, 𝑆𝑆𝐴𝐴𝑇𝑇, 𝑇𝑇𝑆𝑆𝐻𝐻, etc.)

• Many search problems can be solved in polynomial time
(e.g., given a natural number, find a prime factorization)

• Many optimization problems can be solved in polynomial
time (e.g., find the lowest energy conformation of a
protein)

4/22/2024 CS332 - Theory of Computation 19

In a world where P = NP:
• Secure cryptography (as we know it) becomes impossible
 An NP search problem: Given a ciphertext 𝑐𝑐, find a plaintext
𝑚𝑚 and encryption key 𝑘𝑘 that would encrypt to 𝑐𝑐

• AI / machine learning become easy: Identifying a consistent
classification rule is an NP search problem

• Finding mathematical proofs becomes easy: NP search
problem: Given a mathematical statement 𝑆𝑆 and length
bound 𝑘𝑘, is there a proof of 𝑆𝑆 with length at most 𝑘𝑘?

General consensus: P ≠ NP

4/22/2024 CS332 - Theory of Computation 20

NP-Completeness

4/22/2024 CS332 - Theory of Computation 21

Understanding the P vs. NP question
Most believe P ≠ NP, but we are very far from proving it

Question 1: How can studying specific computational
problems help us get a handle on resolving P vs. NP?
Question 2: What would P ≠ NP allow us to conclude
about specific problems we care about?

Idea: Identify the “hardest” problems in NP
Languages 𝑇𝑇 ∈ NP such that 𝑇𝑇 ∈ P iff P = NP

4/22/2024 CS332 - Theory of Computation 22

Recall: Mapping reducibility
Definition:
A function 𝑓𝑓:Σ∗ → Σ∗ is computable if there is a TM 𝑀𝑀
which, given as input any 𝑤𝑤 ∈ Σ∗, halts with only 𝑓𝑓(𝑤𝑤) on
its tape.

Definition:
Language 𝐴𝐴 is mapping reducible to language 𝐵𝐵, written

𝐴𝐴 ≤m 𝐵𝐵
if there is a computable function 𝑓𝑓:Σ∗ → Σ∗ such that for
all strings 𝑤𝑤 ∈ Σ∗, we have 𝑤𝑤 ∈ 𝐴𝐴 ⟺ 𝑓𝑓(𝑤𝑤) ∈ 𝐵𝐵

4/22/2024 CS332 - Theory of Computation 23

Polynomial-time reducibility
Definition:
A function 𝑓𝑓:Σ∗ → Σ∗ is polynomial-time computable if there
is a polynomial-time TM 𝑀𝑀 which, given as input any 𝑤𝑤 ∈ Σ∗,
halts with only 𝑓𝑓(𝑤𝑤) on its tape.

Definition:
Language 𝐴𝐴 is polynomial-time reducible to language 𝐵𝐵,
written

𝐴𝐴 ≤p 𝐵𝐵
if there is a polynomial-time computable function 𝑓𝑓:Σ∗ → Σ∗
such that for all strings 𝑤𝑤 ∈ Σ∗, we have 𝑤𝑤 ∈ 𝐴𝐴 ⟺ 𝑓𝑓(𝑤𝑤) ∈ 𝐵𝐵

4/22/2024 CS332 - Theory of Computation 24

Implications of poly-time reducibility
Theorem: If 𝐴𝐴 ≤p 𝐵𝐵 and 𝐵𝐵 ∈ P, then 𝐴𝐴 ∈ P
Proof: Let 𝑀𝑀 decide 𝐵𝐵 in poly time, and let 𝑓𝑓 be a poly-
time reduction from 𝐴𝐴 to 𝐵𝐵. The following TM decides 𝐴𝐴
in poly time:

4/22/2024 CS332 - Theory of Computation 25

Is NP closed under poly-time reductions?

If 𝐴𝐴 ≤p 𝐵𝐵 and 𝐵𝐵 is in NP, does that mean
𝐴𝐴 is also in NP?

a) Yes, the same proof works using NTMs instead of TMs
b) No, because the new machine is an NTM instead of a

deterministic TM
c) No, because the new NTM may not run in polynomial time
d) No, because the new NTM may accept some inputs it

should reject
e) No, because the new NTM may reject some inputs it

should accept

4/22/2024 CS332 - Theory of Computation 26

NP-completeness
Definition: A language 𝐵𝐵 is NP-complete if
 1) 𝐵𝐵 ∈ NP, and
 2) 𝐵𝐵 is NP-hard: Every language 𝐴𝐴 ∈ NP is poly-time

 reducible to 𝐵𝐵, i.e., 𝐴𝐴 ≤p 𝐵𝐵

4/22/2024 CS332 - Theory of Computation 27

	BU CS 332 – Theory of Computation
	Nondeterministic time and NP
	Speeding things up with nondeterminism
	Hamiltonian Path
	𝐻𝐴𝑀𝑃𝐴𝑇𝐻∈NP
	Analyzing the algorithm
	Nondeterministically guessing, then checking
	An alternative characterization of NP
	𝐻𝐴𝑀𝑃𝐴𝑇𝐻 has a polynomial-time verifier
	NP is the class of languages with polynomial-time verifiers
	Alternative proof of NP⊆EXP
	NP is the class of languages with polynomial-time verifiers
	NP is the class of languages with polynomial-time verifiers
	WARNING: Don’t mix-and-match the NTM and verifier interpretations of NP
	Examples of NP languages: SAT
	Examples of NP languages: SAT
	Examples of NP languages: Traveling Salesperson
	P vs. NP
	In a world where P=NP:
	In a world where P=NP:
	NP-Completeness
	Understanding the P vs. NP question
	Recall: Mapping reducibility
	Polynomial-time reducibility
	Implications of poly-time reducibility
	Is NP closed under poly-time reductions?
	NP-completeness

