BU CS 332 – Theory of Computation

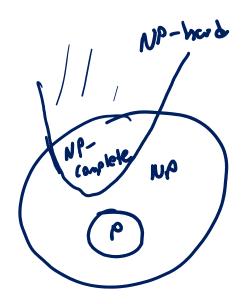
https://forms.gle/4op1rh6EDQPPKaJg6

Lecture 23: Reading: • More NP-completeness Sipser Ch 7.4-7.5 Final: Thursday 5/9 Mark Bun 3-5 April 29, 2024 Roon T60 **NP-completeness**

"The hardest languages in NP"

Definition: A language *B* is NP-complete if

1) $B \in NP$, and



2) *B* is NP-hard: Every language $A \in NP$ is poly-time reducible to *B*, i.e., $A \leq_p B$

Last time:

 $TMSAT = \{\langle N, w, 1^t \rangle \mid \\ NTM \ N \text{ accepts input } w \text{ within } t \text{ steps} \} \text{ is NP-complete} \\ \underline{Cook-Levin Theorem:} \\ \{\langle \varphi \rangle \mid \text{ Boolean formula } \varphi \text{ is satisfiable} \} \text{ is NP-complete} \end{cases}$

New NP-complete problems from old

Lemma: If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$

(poly-time reducibility is transitive)

Theorem: If $B \leq_p C$ for some NP-hard language B, then C is also NP-hard

The usual way to prove NP-completeness: If

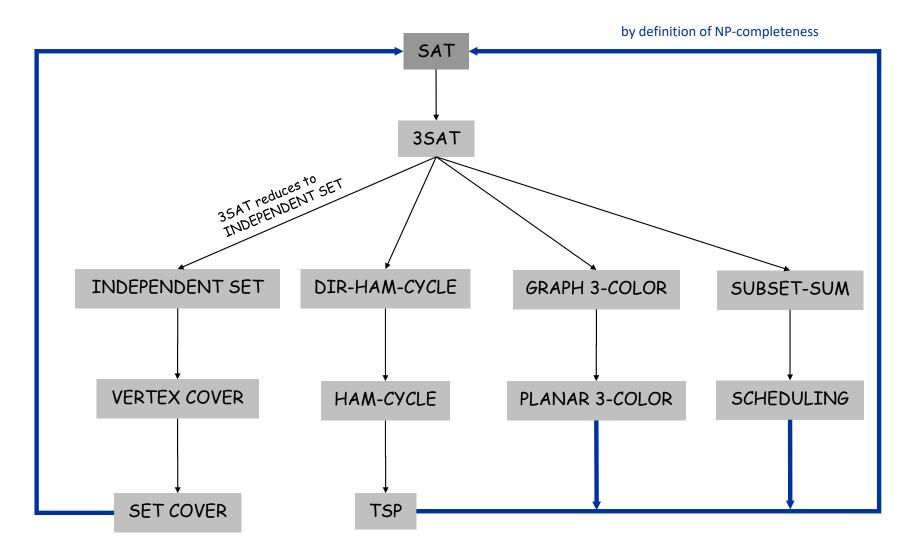
1) $C \in NP$ and

2) There is an NP-complete language B (e.g., 3SAT, VERTEX-COVER, IND-SET, ...) such that $B \leq_p C$,

then C is also NP-complete.

New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!



3SAT (3-CNF Satisfiability)

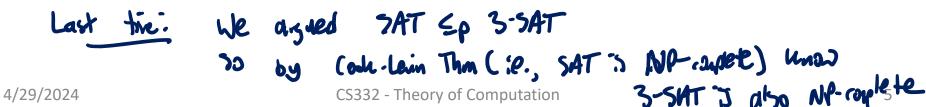
Definitions:

- A literal either a variable of its negation
- x_5 , $\overline{x_7}$
- A clause is a disjunction (OR) of literals Ex. $x_5 \vee \overline{x_7} \vee x_2$
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

Ex.
$$C_1 \wedge C_2 \wedge ... \wedge C_m =$$

 $(x_5 \vee \overline{x_7} \vee x_2) \wedge (\overline{x_3} \vee x_4 \vee x_1) \wedge \cdots \wedge (x_1 \vee x_1 \vee x_1)$

 $3SAT = \{\langle \varphi \rangle | 3 - CNF \text{ formula } \varphi \text{ is satisfiable } \}$



Some general reduction strategies

- Reduction from special case to general case $Ex. VERTEX - COVER \leq_p SET - COVER$ $3SAT \leq_p SAT$ $SAT \leq_p SAT$
- Reduction by simple equivalence Ex. $IND - SET \leq_p VERTEX - COVER$ $VERTEX - COVER \leq_p IND - SET$
- "Gadget" reductions Ex. $SAT \leq_p 3SAT$ $3SAT \leq_p IND - SET$

Independent Set

An **independent set** in an undirected graph G is a set of vertices that includes at most one endpoint of every edge.

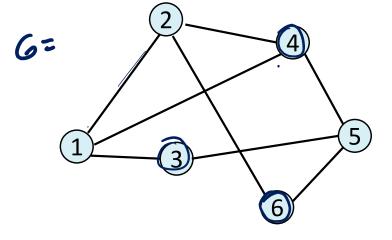
 $IND - SET = \{\langle G, k \rangle | G \text{ is an undirected graph containing an } \}$

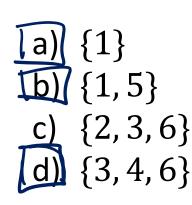
independent set with $\geq k$ vertices}

26,27 EINO-SET 26,37 EINO-SET

(6,4) & INO-SET

Which of the following are independent sets in this graph?





Independent Set is NP-complete

1) $IND - SET \in NP$

Proof of 1) The following gives a poly-time verifier for IND - SETCertificate: Vertices v_1, \ldots, v_k which form an alked independent set of Size in Verifier:

"On input $\langle G, k; v_1, ..., v_k \rangle$, where G is a graph, k is a natural number,

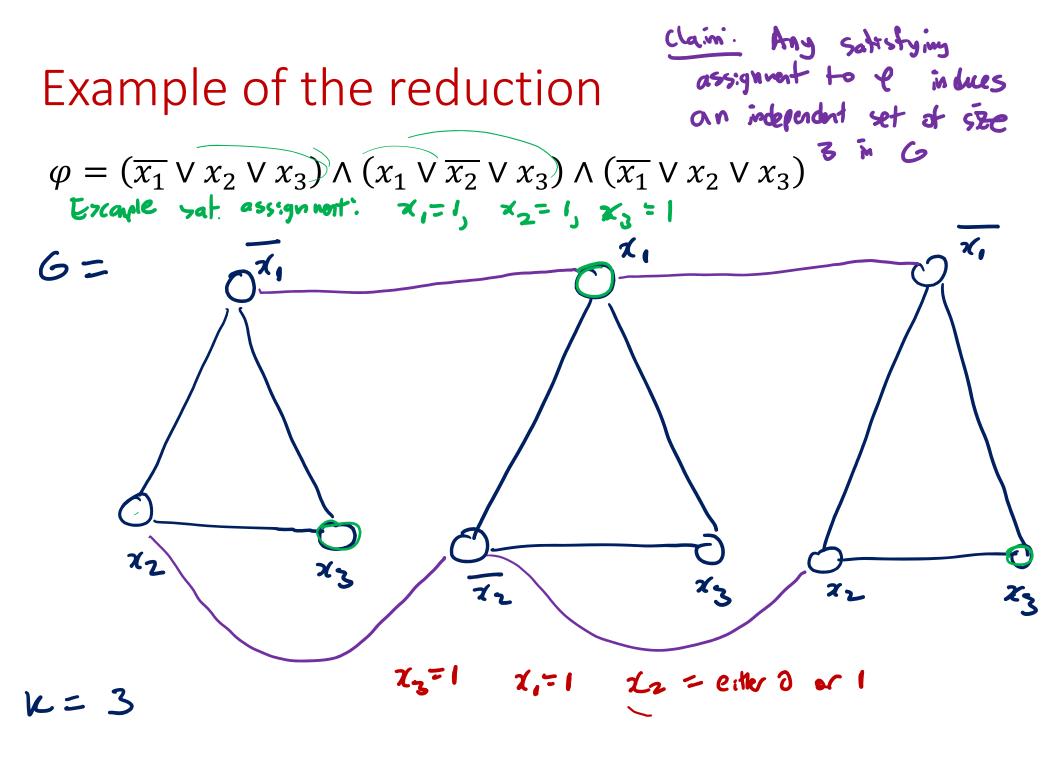
- 1. Check that $v_1, \dots v_k$ are distinct vertices in G
- 2. Check that there are no edges between the v_i 's."

Independent Set is NP-complete - B ∈ NP A (Maan NProphele) 1) IND - SET ∈ NP A ≤ P A ≤ P B CNF formh 4 > satisfielde <> G has an independent set of size > le

Proof of 2) The following TM computes a poly-time reduction.

"On input $\langle \varphi \rangle$, where φ is a 3CNF formula,

- 1. Construct graph G from φ
 - G contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect every literal to each of its negations.
- 2. Output $\langle G, k \rangle$, where <u>k</u> is the number of clauses in φ ."



Proof of correctness for reduction

Let k = # clauses and l = # literals in φ

Correctness: φ is satisfiable iff G has an independent set of size k

 ψ substance \exists a solution assignment \Rightarrow Given a satisfying assignment, select one true literal from each triangle. This is an independent set of size k

 $\leftarrow \text{Let } S \text{ be an independent set in } G \text{ of size } k$

- *S* must contain exactly one vertex in each triangle
- Set these literals to true, and set all other variables arbitrarily
- Truth assignment is consistent and all clauses are satisfied

Runtime: $O(k + l^2)$ which is polynomial in input size

Some general reduction strategies

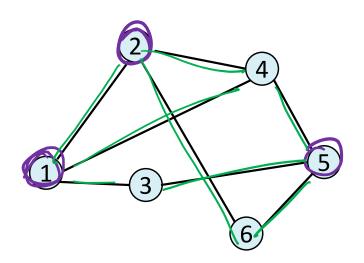
- Reduction by simple equivalence Ex. $IND - SET \leq_p VERTEX - COVER$ $VERTEX - COVER \leq_p IND - SET$
- Reduction from special case to general case Ex. $VERTEX - COVER \leq_p SET - COVER$ $3SAT \leq_p SAT$
- "Gadget" reductions Ex. $SAT \leq_p 3SAT$ $3SAT \leq_p IND - SET$

Vertex Cover set s of unhes c.t. & edges (u,v) es, ever u er v es

Given an undirected graph G, a vertex cover in G is a subset of nodes which includes at *least* one endpoint of every edge.

 $VERTEX - COVER = \{\langle G, k \rangle \mid G \text{ is an undirected graph which has a } \}$

vertex cover with $\leq k$ vertices}



Independent Set and Vertex Cover

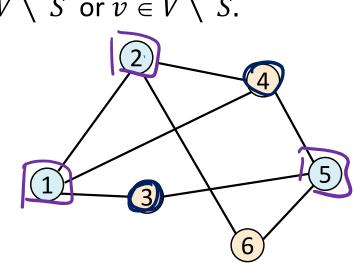
Claim. S is an independent set iff $V \setminus S$ is a vertex cover.

 \implies Let S be any independent set.

- Consider an arbitrary edge (u, v).
- *S* is independent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V \setminus S$ or $v \in V \setminus S$.
- Thus, $V \setminus S$ covers (u, v).

 $\leftarrow E Let V \setminus S be any vertex cover.$

- Consider two nodes $u \in S$ and $v \in S$.
- Then $(u, v) \notin E$ since $V \setminus S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge \Rightarrow S is an independent set.



y edge (1,2), etter

INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET \leq_p VERTEX-COVER.

What do we need to do to prove this theorem?

- a) Construct a poly-time nondet. TM deciding IND-SET
- b) Construct a poly-time deterministic TM deciding IND-SET
- c) Construct a poly-time nondet. TM mapping instances of IND-SET to instances of VERTEX-COVER
- d) Construct a poly-time deterministic TM mapping instances of IND-SET to instances of VERTEX-COVER
- e) Construct a poly-time nondet. TM mapping instances of VERTEX-COVER to instances of IND-SET
- f) Construct a poly-time deterministic TM mapping instances of VERTEX-COVER to instances of IND-SET

INDEPENDENT SET reduces to VERTEX COVER S is an ind set in EV V Theorem. IND-SET \leq_p VERTEX-COVER. **Proof.** The following TM computes the reduction. "On input $\langle G, k \rangle$, where G is an undirected graph and k is an instace of JWO-SET integer, 1. Output $\langle G, n - k \rangle$, where n is the number of nodes in G." instare of JERTEX-COVER Jasets of size in that is inde **Correctness:** 17 • G has an independent set of size at least k iff it has a vertex cover of size at most n-k. (=)] a set VNS of size surle that is a vertex coor in G **Runtime**: Reduction runs in linear time.

on a multi-take TM, at least

VERTEX COVER reduces to INDEPENDENT SET

Theorem. VERTEX-COVER \leq_p IND-SET

Proof. The following TM computes the reduction.

"On input $\langle G, k \rangle$, where G is an undirected graph and k is an integer, of value of value \mathcal{A}

1. Output $\langle G, n - k \rangle$, where *n* is the number of nodes in *G*."

an inslave of JND-SET

Correctness:

- G has a vertex cover of size at most k iff it has an independent set of size at least n − k. So <
 Kaperatoria (G, N-k) ∈ I NO-SFT
 Runtime:
- Reduction runs in linear time.

Subset Sum

SUBSET-SUM = { $\langle w_1, ..., w_m, t \rangle$ | there exists a subset of natural numbers $w_1, ..., w_m$ that sum to t}

$$\frac{Ez}{\sqrt{3}}, \frac{7}{7}, \frac{2}{7}, \frac{1}{7}, \frac{9}{7} \in SUBSET-SUM$$

$$u_1 u_2 u_3 u_4 u_5 t$$

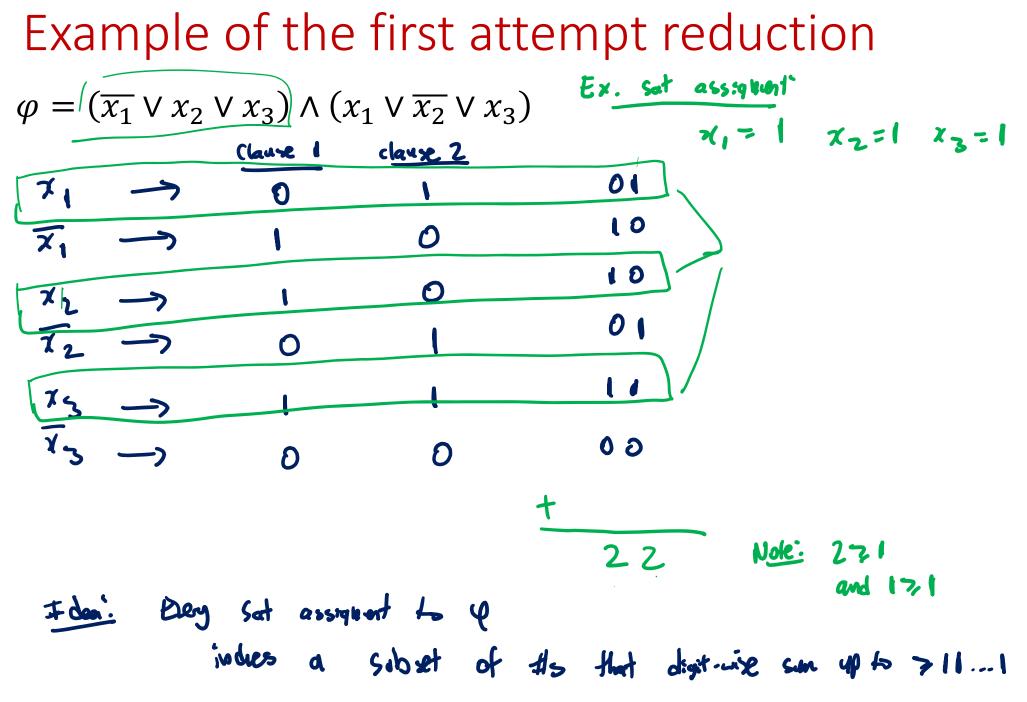
beance uz+ uz= 7+2=9 (=t)

Theorem: SUBSET-SUM is NP-complete

Claim 1: SUBSET-SUM is in NP <u>NTM</u>: (. Nodel. guess S S Sm] 2. Acch that $w_{i_1} + w_{i_2} + \cdots + w_{i_e} = t$ use S=3 i,..., i.e. Claim 2: SUBSET-SUM is NP-hard

 $3SAT \leq_p SUBSET-SUM$ Goal: Given a 3CNF formula φ on v variables and k clauses, construct a SUBSET-SUM instance w_1, \ldots, w_m, t such that φ is satisfiable iff there exists a subset of w_1, \ldots, w_m that sum to t First attempt: Encode each literal ℓ of φ as a k-digit decimal number $w_{\ell} = c_1 \dots c_k$ where

 $c_i = \begin{cases} 1 \text{ if } \ell \text{ appears in clause } i \\ 0 \text{ otherwise} \end{cases}$



4/29/2024

3SAT \leq_p SUBSET-SUM First attempt: Encode each literal ℓ of φ as a k-digit decimal number $w_{\ell} = c_1 \dots c_k$ where $c_i = \begin{cases} 1 \text{ if } \ell \text{ appears in clause } i \\ 0 \text{ otherwise} \end{cases}$ Claim: If φ is satisfiable, then there exists a subset of the w_{ℓ} 's that "digit-wise" add up to "at least" 111 ... 11

Two issues:

- 1) Need to enforce that exactly one of ℓ , $\overline{\ell}$ is set to 1
- 2) Need the subset to add up to exactly some target

 $\begin{aligned} 3SAT \leq_{p} \text{SUBSET-SUM} \\ \text{Actual reduction: Encode each literal } \ell \text{ of } \varphi \text{ as a } (v+k) \text{-} \\ \text{digit decimal number } w_{\ell} = b_{1} \dots b_{v} | c_{1} \dots c_{k} \text{ where} \\ b_{i} = \begin{cases} 1 \text{ if } \ell \in \{x_{i}, \overline{x_{i}}\} \\ 0 \text{ otherwise} \end{cases} \quad c_{i} = \begin{cases} 1 \text{ if } \ell \text{ appears in clause } i \\ 0 \text{ otherwise} \end{cases} \end{aligned}$

Also, include two copies each of 000...0|100...0, 000...0|010...0, ... 000...0|0...01

Claim: φ is satisfiable if and only if there exists a subset of the numbers that add up to $t = 111 \dots 11 | 333 \dots 33$

Example of the reduction

$$\varphi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3)$$
 Image: C_1 model iteral \$\ell\$ as $w_\ell = b_1 \dots b_\nu | c_1 \dots c_k$
 $\psi_l = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3)$
 Image: C_1 model iteral \$\ell\$ as $w_\ell = b_1 \dots b_\nu | c_1 \dots c_k$
 $\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3)$
 Image: C_1 model iteral \$\ell\$ as $w_\ell = b_1 \dots b_\nu | c_1 \dots c_k$
 $\overline{x_1} \lor 0 \lor 0 \land 0$
 $\overline{x_1} \lor \overline{x_2} \lor x_3$
 $\overline{x_1} \lor 0 \lor 0$
 $\overline{x_1} \lor \overline{x_2} \lor x_3$
 $\overline{x_1} \lor 0$
 $\overline{0} \lor 0$
 $\overline{x_1} \lor 0$
 $\overline{0} \circ 0$
 $\overline{x_1} \lor 0$
 $\overline{0} \circ 0$
 $\overline{x_2} \lor 0$
 $\overline{0} \circ 0$
 $\overline{x_2} \lor 0$
 $\overline{0} \circ 0$
 $\overline{x_2} \lor 0$
 $\overline{0} \circ 0$
 $\overline{x_1} \lor 0$
 $\overline{0} \circ 0$
 $\overline{x_2} \lor 0$
 $\overline{0} \circ 0$
 $\overline{x_1} \lor 0$
 $\overline{x_$

CS332 - Theory of Computation