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NP-completeness

“The hardest languages in NP”
Definition: A language B is NP-complete if
1) B € NP, and

2) B is NP-hard: Every language A € NP is poly-time
reducible to B, i.e., A <, B

Last time:

TMSAT = {{(N,w, 1%) |
NTM N accepts input w within t steps} is NP-complete

Cook-Levin Theorem:
{{p)| Boolean formula ¢ is satisfiable} is NP-complete
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New NP-complete problems from old

Lemma: If A <p B and B <p C, then A <p C

(poly-time reducibility is transitive)

Theorem: It B <, C for some NP-hard language B, then C
is also NP-hard

The usual way to prove NP-completeness:
If
1) C € NP and

2) There is an NP-complete language B (e.g., 3SAT,
VERTEX-COVER, IND-SET, ...) such that B <, C,J

then C is also NP-complete.
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New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

by definition of NP-completeness

SAT

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP
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3SAT (3-CNF Satisfiability) _ g‘

Definitions:
* A literal either a variable of its negation X5, X7
* A clause is a disjunction (OR) of literals  Ex. x5 VX5 V x5

* A 3-CNF is a conjunction (AND) of clauses where each
clause contains exactly 3 literals

EX. Cy ACy A ... A Cpy =
(s VX VX)ANGGG VX,V ) A A(xy VXV Xq)

3SAT = {{¢)|3 — CNF formula ¢ is satisfiable }

Lok %' e aged AT <p HOAT
W by Cole-lewn Tam (o, SAT 5 NP-aget) Umad
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Some general reduction strategies

* Reduction from special case to general case
Ex. VERTEX — COVER <, SET — COVER
3SAT <, SAT SAT &p AT

e —

* Reduction by simple equivalence
Ex. IND — SET <, VERTEX — COVER
VERTEX — COVER <, IND — SET

e “Gadget” reductions
Ex. SAT <, 3SAT

3SAT <, IND — SET
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Independent Set

An independent set in an undirected graph G is a set of vertices that
includes at most one endpoint of every edge.

IND — SET = {{G, k)| G is an undirected graph containing an
independent set with > k vertices}
{6,7) eTNO-SET
£ b,3) € TNO<ET COM) ¢ TM-SET
Which of the following are
independent sets in this graph?

%{1}
(1,5}
c) {2,3,6}
{3,4,6}
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Independent Set is NP-complete

1) IND — SET € NP

_ TND SET 5 A-had
2) Reduce 3SAT <, IND — SET [ =7 T80T * % 1=s

NO -herd

Proof of 1) The following gives a poly-time verifier for IND — SET

Certificate: Vertices vy, .., Vg uwch fom  an allged “mdgerderdt set of

. L
Verifier: Sie

“Oninput (G, k; v4, ..., v} ), Where G is a graph, k is a natural number,

1. Checkthat vy, ... v are distinct vertices in G Clecw le'.cv
) V-V w
2. Check that there are no edges between the v;’s. an “ndegadent
Set of aze
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. _Leh
Independent Set is NP-compIete’A s gt

1) IND — SET € NP Aot 6

= 6 D Nf-otielE
2) Reduce 3SAT <, IND — SET 7 6 N

CIF fumla @ o gfufidte &> G Wes an wdepdnt— <ot o
sz 2l

Proof of 2) The following TM computes a poly-time reduction.

“On input (@), where @ is a 3CNF formula,

1. Construct graph G from @
e (G contains 3 vertices for each clause, one for each literal.

* Connect 3 literals in a clause in a triangle.
* Connect every literal to each of its negations.

2. Output (G, k), where k is the number of clauses in ¢.”
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Qaw - Fay  galvetyig

' avsqwvet o @ dues
Example of the reduction et & e

_ _ - S
0= TV 1, VA G VIV ) A (Y 2, V ) @

Enﬂv"e' ‘)dl’. ‘“‘o,ﬂﬂvﬂ"- «,= l) *,= lJ ra < |

G = C\
/ —O E
Aq A 93 o 2'3

(&
EN
L7l 2,51 AL, = el D or |
k=53 —
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Proof of correctness for reduction

Let k = # clauses and [ = # literals in @
Correctness: @ is satisfiable iff G has an independent set of size k

@ sishe ) D a sekibyiy assguet
= Given a satisfying assignment, select one true literal from each

triangle. This is an independent set of size k

< Let S be an independent set in G of size k
* 5§ must contain exactly one vertex.in each triangle

* Set these literals to true, and set all other variables arbitrarily

* Truth assignment is consistent and all clauses are satisfied

Runtime: O (k + [?) which is polynomial in input size
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Some general reduction strategies

* Reduction by simple equivalence
EX.,IND — SET <, VERTEX — COVER
VERTEX — COVER <, IND — SET

* Reduction from special case to general case
Ex. VERTEX — COVER <, SET — COVER
3SAT <, SAT

e “Gadget” reductions
EX.[SAT <, 3SAT\
\354T <, IND — SET |
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Vertex Cover @t S of whes of. ¢ edges
(A, eSS, e w & ¥ eS

Given an undirected graph G, a vertex cover in G is a subset of
nodes which includes at least one endpoint of every edge.

VERTEX — COVER ={(G, k) | G is an undirected graph which has a

vertex cover with < k vertices}
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Independent Set and Vertex Cover

Claim. S is an independent set iff IV \ S is a vertex cover.

— Let S be any independent set.
* Consider an arbitrary edge (u, v). ¢ edse (u0), e~
* Sisindependent=u ¢ SorvgS = ueV\ Sorvel\ S

. Thus@covers (u, v).

— Let V' \ S be any vertex cover.
* Considertwonodesu € Sand v € S.
* Then (u,v) ¢ E since V' \ S is a vertex cover.
* Thus, no two nodes in S are joined by an edge = S is an independent set.

4/29/2024 CS332 - Theory of Computation 14



INDEPENDENT SET reduces to VERTEX COVER
[m] oty [m]

Theorem. IND-SET <, VERTEX-COVER.
What do we need to do to prove this theorem?

-,

[=] Jeroim
a) Construct a poly-time nondet. TM deciding IND-SET
b) Construct a poly-time deterministic TM deciding IND-SET

c) Construct a poly-time nondet. TM mapping instances of IND-
SET to instances of VERTEX-COVER

Construct a poly-time deterministic TM mapping instances of
IND-SET to instances of VERTEX-COVER

e) Construct a poly-time nondet. TM mapping instances of
VERTEX-COVER to instances of IND-SET

f) Construct a poly-time deterministic TM mapping instances of
VERTEX-COVER to instances of IND-SET



INDEPENDENT SET reduces t(; VERTJEX CC;VER
19 en md Set v

Theorem. IND-SET <, VERTEX-COVER, & VN\% & & &t

B

Proof. The following TM computes the reduction.

“Oninput (G, k), where G is an undirected graph and k is an
integer, Moheie o TNO SET
1. Output (G,n — k), where n is the number of nodes in G.”
T ’\“M Q{— JERT EX -cOVEL
Ja sets of s S Wt wlgad,}-

Correctness: 7 - 6

* ( has an independent set of size at least k iff it has a vertex
cover of size at most n — k. (D J aswt UNG of s2¢ Snde

Runtime: Het N a writx caer i G

e Reduction runs in linear time.
T e 4 Wl T, of leot
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VERTEX COVER reduces to INDEPENDENT SET

Theorem. VERTEX-COVER <, IND-SET
Proof. The following TM computes the reduction.

“Oninput (G, k), where G is an undirected graph and k is an
integer’ - - an Mﬁ"“{, O(’ veeTex “Wb&

1. Output (G,n — k), where n is the number of nodes in G.”
an mske o INQ-SET

Correctness:

* (7 has a vertex cover of size at most k iff it has an

independent set of size atleastn — k. ¢ Lo € VERTER- 2 T
. e e w-k? eI NODAET
Runtime: ’

e Reduction runs in linear time.
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Subset Sum

SUBSET-SUM = {{wy, ..., Wy, t) |
there exists a subset of natural numbers wy, ..., w,,, that sum to t}

% <7’1 4, 2,1, ‘1, ‘17 & Sow SET -SUA
W Wy Jyuy Ws ¥

eane  Jpr = F42=9 (=¥)

Theorem: SUBSET-SUM is NP-complete

Claim 1: SUBSET-SUM isin NP N
. Nadel. guse S ¢ Lm]

10 Qe that 0, 4udyyy .+ Wiz € et ST luoyied

Claim 2: SUBSET-SUM is NP-hard
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3SAT <, SUBSET-SUM

Goal: Given a 3CNF formula ¢ on v variables and k clauses,
construct a SUBSET-SUM instance wy, ..., W,,,, t such that

@ is satisfiable iff there exists a subset of wy, ..., w,,
thatsumtot

[

O
First attempt: Encode each literal £ of ¢ as a k-digit decimal
number wy = ¢y ... ¢, Where

- —

‘x‘) 10’ 1\)13 o o

= {1 if £ appears in clause i
l 0 otherwise



Example of the first attempt reduction

_ __ . Sat acsqual’
<p=/(x1Vx2 Vx3)A(x; VX, Vxg) Ex. T aes
€= | 2zl xy=d

ause | clau

&‘I/‘ — : 0 E% YR
T T | o L9 >
1, — \ O ‘o‘\

A o l 0% /
@ s 0 A
LR— ) 0 05

+

22 Noe: 224
. | ad (2|
?k; Biey (o arsqued Lo ¢

wher o clowt of o Het dist-ste cm Pl S0
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3SAT <, SUBSET-SUM

First attempt: Encode each literal £ of ¢ as a k-digit decimal
number w, = ¢; ... ¢, Where

o {1 if £ appears in clause i

;=

0 otherwise
Claim: If @ is satisfiable, then there exists a subset of the
w,’s that “digit-wise” add up to “at least” 111 ... 11

ﬁ

Two issues:
1) Need to enforce that exactly one of £, € is set to 1
2) Need the subset to add up to exactly some target



3SAT <, SUBSET-SUM

Actual reduction: Encode each literal £ of @ asa (v + k)-
digit deci umber wy, = by ... b,| ¢4 ...c;, where

g {1 if £ € {x;, X; L {1 if £ appears in clause i
0 otherwise 0 otherwise

Also, include two copies each of 000...0]100...0,
000...0/010...0, ... 000...0|0...01

Claim: @ is satisfiable if and only if there exists a subset of
the numbers thatadduptot =111...11|333...33_




Example of the reduction  whee o =™ Zans

o L . (1iff € {x, %)
@ =X VxVX3) A(xX VHVx3) \b" = {Vgothernio \\

. by by oo G, T | |

9 - = {1 if £ appears in clause i
\l A ' 0 © (0 | ' 0 otherwise

1' l- f5) D ( O Include two copies each of 000...0]/100...0,
-l 000...0|010...0, ... 000...0]0...01
!ﬁ. o | (9 10 \\

2N O 1 d 0 | Cq.
}; © o L _L) assiywwat T, <4

1‘3 0 0 ‘. 9 0 B 11"/'
_ — p S5
¢y 0 ©® © \ o] ’

b © o © I 9 1 00 0
LY 6 0 ° 0 oo_éa' “‘: toget’. |1\ 33

O 929 ot
971’ + oo | O
000 o1 ‘
\ 1 Y
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