BU CS 332 – Theory of Computation

https://forms.gle/4op1rh6EDQPPKaJg6

Lecture 23:

More NP-completeness

Reading:

Sipser Ch 7.4-7.5

Mark Bun April 29, 2024

NP-completeness

"The hardest languages in NP"

Definition: A language B is NP-complete if

- 1) $B \in NP$, and
- 2) B is NP-hard: Every language $A \in NP$ is poly-time reducible to B, i.e., $A \leq_{p} B$

Last time:

 $TMSAT = \{\langle N, w, 1^t \rangle \mid$

NTM *N* accepts input *w* within *t* steps} is NP-complete

Cook-Levin Theorem:

 $\{\langle \varphi \rangle |$ Boolean formula φ is satisfiable} is NP-complete

New NP-complete problems from old

Lemma: If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$ (poly-time reducibility is <u>transitive</u>)

Theorem: If $B \leq_p C$ for some NP-hard language B, then C is also NP-hard

The usual way to prove NP-completeness:

lf

- 1) $C \in NP$ and
- 2) There is an NP-complete language B (e.g., 3SAT, VERTEX-COVER, IND-SET, ...) such that $B \leq_p C$,

then C is also NP-complete.

New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

3SAT (3-CNF Satisfiability)

Definitions:

- A literal either a variable of its negation x_5 , $\overline{x_7}$
- A clause is a disjunction (OR) of literals Ex. $x_5 \vee \overline{x_7} \vee x_2$
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

Ex.
$$C_1 \wedge C_2 \wedge ... \wedge C_m =$$

$$(x_5 \vee \overline{x_7} \vee x_2) \wedge (\overline{x_3} \vee x_4 \vee x_1) \wedge \cdots \wedge (x_1 \vee x_1 \vee x_1)$$

 $3SAT = \{\langle \varphi \rangle | 3 - CNF \text{ formula } \varphi \text{ is satisfiable } \}$

Some general reduction strategies

Reduction from special case to general case

Ex.
$$VERTEX - COVER \le_{p} SET - COVER$$

 $3SAT \le_{p} SAT$

Reduction by simple equivalence

Ex.
$$IND - SET \le_{p} VERTEX - COVER$$

 $VERTEX - COVER \le_{p} IND - SET$

"Gadget" reductions

Ex.
$$SAT \le_{p} 3SAT$$

 $3SAT \le_{p} IND - SET$

Independent Set

An **independent set** in an undirected graph G is a set of vertices that includes at most one endpoint of every edge.

 $IND - SET = \{\langle G, k \rangle | G \text{ is an undirected graph containing an}$ independent set with $\geq k$ vertices}

Which of the following are independent sets in this graph?

- a) {1}
- b) {1,5}
- c) $\{2, 3, 6\}$
- d) {3, 4, 6}

Independent Set is NP-complete

- 1) $IND SET \in NP$
- 2) Reduce $3SAT \leq_{p} IND SET$

Proof of 1) The following gives a poly-time verifier for IND - SET

Certificate: Vertices v_1 , ..., v_k

Verifier:

"On input $\langle G, k; v_1, ..., v_k \rangle$, where G is a graph, k is a natural number,

- 1. Check that v_1 , ... v_k are distinct vertices in G
- 2. Check that there are no edges between the v_i 's."

Independent Set is NP-complete

- 1) $IND SET \in NP$
- 2) Reduce $3SAT \leq_{p} IND SET$

Proof of 2) The following TM computes a poly-time reduction.

"On input $\langle \varphi \rangle$, where φ is a 3CNF formula,

- 1. Construct graph G from φ
 - G contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect every literal to each of its negations.
- 2. Output $\langle G, k \rangle$, where k is the number of clauses in φ ."

Example of the reduction

$$\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

Proof of correctness for reduction

Let k = # clauses and l = # literals in φ

Correctness: φ is satisfiable iff G has an independent set of size k

 \implies Given a satisfying assignment, select one true literal from each triangle. This is an independent set of size k

 \leftarrow Let S be an independent set in G of size k

- S must contain exactly one vertex in each triangle
- Set these literals to true, and set all other variables arbitrarily
- Truth assignment is consistent and all clauses are satisfied

Runtime: $O(k + l^2)$ which is polynomial in input size

Some general reduction strategies

Reduction by simple equivalence

Ex.
$$IND - SET \le_{p} VERTEX - COVER$$

 $VERTEX - COVER \le_{p} IND - SET$

Reduction from special case to general case

Ex.
$$VERTEX - COVER \le_{p} SET - COVER$$

 $3SAT \le_{p} SAT$

• "Gadget" reductions

Ex.
$$SAT \le_{p} 3SAT$$

 $3SAT \le_{p} IND - SET$

Vertex Cover

Given an undirected graph G, a vertex cover in G is a subset of nodes which includes at *least* one endpoint of every edge.

 $VERTEX - COVER = \{\langle G, k \rangle \mid G \text{ is an undirected graph which has a}$ $\text{vertex cover with } \leq k \text{ vertices} \}$

Independent Set and Vertex Cover

Claim. S is an independent set iff $V \setminus S$ is a vertex cover.

- \Longrightarrow Let S be any independent set.
 - Consider an arbitrary edge (u, v).
 - S is independent $\Longrightarrow u \notin S$ or $v \notin S \implies u \in V \setminus S$ or $v \in V \setminus S$.
 - Thus, $V \setminus S$ covers (u, v).

 \leftarrow Let $V \setminus S$ be any vertex cover.

- Consider two nodes $u \in S$ and $v \in S$.
- Then $(u, v) \notin E$ since $V \setminus S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge \implies S is an independent set.

INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET \leq_p VERTEX-COVER.

What do we need to do to prove this theorem?

- a) Construct a poly-time nondet. TM deciding IND-SET
- b) Construct a poly-time deterministic TM deciding IND-SET
- c) Construct a poly-time nondet. TM mapping instances of IND-SET to instances of VERTEX-COVER
- d) Construct a poly-time deterministic TM mapping instances of IND-SET to instances of VERTEX-COVER
- e) Construct a poly-time nondet. TM mapping instances of VERTEX-COVER to instances of IND-SET
- f) Construct a poly-time deterministic TM mapping instances of VERTEX-COVER to instances of IND-SET

INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET \leq_p VERTEX-COVER.

Proof. The following TM computes the reduction.

"On input $\langle G, k \rangle$, where G is an undirected graph and k is an integer,

1. Output $\langle G, n - k \rangle$, where n is the number of nodes in G."

Correctness:

• G has an independent set of size at least k iff it has a vertex cover of size at most n-k.

Runtime:

Reduction runs in linear time.

VERTEX COVER reduces to INDEPENDENT SET

Theorem. VERTEX-COVER \leq_p IND-SET

Proof. The following TM computes the reduction.

"On input $\langle G, k \rangle$, where G is an undirected graph and k is an integer,

1. Output $\langle G, n - k \rangle$, where n is the number of nodes in G."

Correctness:

• G has a vertex cover of size at most k iff it has an independent set of size at least n-k.

Runtime:

Reduction runs in linear time.

Subset Sum

SUBSET-SUM = $\{\langle w_1, ..., w_m, t \rangle \mid$ there exists a subset of natural numbers $w_1, ..., w_m$ that sum to $t\}$

Theorem: SUBSET-SUM is NP-complete

Claim 1: SUBSET-SUM is in NP

Claim 2: SUBSET-SUM is NP-hard

$3SAT \leq_p SUBSET-SUM$

Goal: Given a 3CNF formula φ on v variables and k clauses, construct a SUBSET-SUM instance w_1, \ldots, w_m, t such that φ is satisfiable iff there exists a subset of w_1, \ldots, w_m that sum to t

First attempt: Encode each literal ℓ of φ as a k-digit decimal number $w_{\ell} = c_1 \dots c_k$ where

$$c_i = \begin{cases} 1 & \text{if } \ell \text{ appears in clause } i \\ 0 & \text{otherwise} \end{cases}$$

Example of the first attempt reduction

$$\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3)$$

$3SAT \leq_p SUBSET-SUM$

First attempt: Encode each literal ℓ of φ as a k-digit decimal number $w_{\ell} = c_1 \dots c_k$ where

$$c_i = \begin{cases} 1 & \text{if } \ell \text{ appears in clause } i \\ 0 & \text{otherwise} \end{cases}$$

Claim: If φ is satisfiable, then there exists a subset of the w_{ℓ} 's that "digit-wise" add up to "at least" $111 \dots 11$

Two issues:

- 1) Need to enforce that exactly one of ℓ , $\overline{\ell}$ is set to 1
- 2) Need the subset to add up to exactly some target

$3SAT \leq_p SUBSET-SUM$

Actual reduction: Encode each literal ℓ of φ as a (v+k)-digit decimal number $w_{\ell}=b_1\dots b_v | c_1\dots c_k$ where

$$b_i = \begin{cases} 1 \text{ if } \ell \in \{x_i, \overline{x_i}\} \\ 0 \text{ otherwise} \end{cases} \quad c_i = \begin{cases} 1 \text{ if } \ell \text{ appears in clause } i \\ 0 \text{ otherwise} \end{cases}$$

Also, include two copies each of 000...0 | 100...0, 000...0 | 010...0, ... 000...0 | 0...01

Claim: φ is satisfiable if and only if there exists a subset of the numbers that add up to $t = 111 \dots 11 | 333 \dots 33$

Example of the reduction

$$\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3)$$

Encode literal ℓ as $w_{\ell} = b_1 \dots b_{\nu} | c_1 \dots c_k$ where

$$b_i = \begin{cases} 1 \text{ if } \ell \in \{x_i, \overline{x_i}\} \\ 0 \text{ otherwise} \end{cases}$$

$$c_i = \begin{cases} 1 \text{ if } \ell \text{ appears in clause } i \\ 0 \text{ otherwise} \end{cases}$$
 Include two copies each of 000...0|100...0, 000...0|010...0, ... 000...0|0...01