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NP-completeness

“The hardest languages in NP”
Definition: A language B is NP-complete if
1) B € NP, and
2) B is NP-hard: Every language A € NP is poly-time
reducible to B, i.e., A <p B
Last time:

TMSAT = {{N,w, 1%) |
NTM N accepts input w within t steps} is NP-complete

Cook-Levin Theorem:
{{p)| Boolean formula ¢ is satisfiable} is NP-complete
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New NP-complete problems from old

Lemma: If A <p B and B <p C, then A <p C
(poly-time reducibility is transitive)

Theorem: If B <, C for some NP-hard language B, then C
is also NP-hard

The usual way to prove NP-completeness:
If

1) C € NP and

2) There is an NP-complete language B (e.g., 3SAT,
VERTEX-COVER, IND-SET, ...) such that B <p C,

then C is also NP-complete.
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New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

by definition of NP-completeness

SAT

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP
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3SAT (3-CNF Satisfiability) E‘

Definitions:
* A literal either a variable of its negation Xs, X7
* A clause is a disjunction (OR) of literals  Ex. xg VX7 V X,

* A 3-CNF is a conjunction (AND) of clauses where each
clause contains exactly 3 literals

EX.C;ACo N ... ANC,, =
(Xs VX VX)) NGV X, VX)ANAN(XyVXyVxg)

3SAT = {{¢)|3 — CNF formula ¢ is satisfiable }

4/29/2024 CS332 - Theory of Computation 5



Some general reduction strategies

* Reduction from special case to general case
Ex. VERTEX — COVER <, SET — COVER
3SAT <, SAT

* Reduction by simple equivalence
Ex. IND — SET <, VERTEX — COVER
VERTEX — COVER <, IND — SET

* “Gadget” reductions
Ex. SAT <, 3SAT
3SAT <, IND — SET
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Independent Set

An independent set in an undirected graph G is a set of vertices that
includes at most one endpoint of every edge.

IND — SET = {(G, k)|G is an undirected graph containing an

independent set with > k vertices}

Which of the following are
independent sets in this graph?

Ot 40

a) {1}

b) {1,5}
c) {2,3,6)
d) {3,4,6)

O 722



Independent Set is NP-complete

1) IND — SET € NP
2) Reduce 3SAT <, IND — SET

Proof of 1) The following gives a poly-time verifier for IND — SET

Certificate: Vertices v4, ..., Uy

Verifier:
“Oninput (G, k; v4, ..., Vx), Wwhere G is a graph, k is a natural number,

1. Checkthat vy, ... v, are distinct vertices in G

2. Check that there are no edges between the v;’s.”
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Independent Set is NP-complete

1) IND — SET € NP
2) Reduce 3SAT <, IND — SET

Proof of 2) The following TM computes a poly-time reduction.
“On input (@), where @ is a 3CNF formula,
1. Construct graph G from @

e (G contains 3 vertices for each clause, one for each literal.

e Connect 3 literals in a clause in a triangle.
e Connect every literal to each of its negations.

2. Output (G, k), where k is the number of clauses in ¢.”



Example of the reduction

@ =1V Vxz) A(xg VI Vx3z) A(X Vxy Vxs)
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Proof of correctness for reduction

Let k =# clauses and [ = # literals in ¢
Correctness: @ is satisfiable iff G has an independent set of size k

= Given a satisfying assignment, select one true literal from each
triangle. This is an independent set of size k

< Let S be an independent set in G of size k
* S must contain exactly one vertex in each triangle
e Set these literals to true, and set all other variables arbitrarily

* Truth assignment is consistent and all clauses are satisfied

Runtime: O (k + %) which is polynomial in input size



Some general reduction strategies

* Reduction by simple equivalence
EX.|IND — SET <, VERTEX — COVER
VERTEX — COVER <, IND — SET

* Reduction from special case to general case
Ex. VERTEX — COVER <, SET — COVER
3SAT <, SAT

* “Gadget” reductions
Ex. SAT <, 3SAT
3SAT <, IND — SET
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Vertex Cover

Given an undirected graph G, a vertex cover in G is a subset of
nodes which includes at /east one endpoint of every edge.

VERTEX — COVER ={{(G, k) | G is an undirected graph which has a

vertex cover with < k vertices}

4/29/2024
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Independent Set and Vertex Cover

Claim. S is an independent set iff V' \ S is a vertex cover.

— Let S be any independent set.
* Consider an arbitrary edge (u, v).
* Sisindependent = u ¢ SorvegS§ = uel/\ Sorvel\ S.

* Thus, V' \ S covers (u,v).
‘9
=3 (5)
— Let /' \ S be any vertex cover.
e Considertwonodesu € Sandv € S. 6

* Then (u,v) ¢ E since V' \ S is avertex cover.
* Thus, no two nodes in S are joined by an edge = S is an independent set.
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INDEPENDENT SET reduces to VERTEX COVER
[=] oty [m]

Theorem. IND-SET <, VERTEX-COVER.
What do we need to do to prove this theorem?

-

[=] Jeroim
a) Construct a poly-time nondet. TM deciding IND-SET
b) Construct a poly-time deterministic TM deciding IND-SET

c) Construct a poly-time nondet. TM mapping instances of IND-
SET to instances of VERTEX-COVER

d) Construct a poly-time deterministic TM mapping instances of
IND-SET to instances of VERTEX-COVER

e) Construct a poly-time nondet. TM mapping instances of
VERTEX-COVER to instances of IND-SET

f) Construct a poly-time deterministic TM mapping instances of
VERTEX-COVER to instances of IND-SET



INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET Sp VERTEX-COVER.

Proof. The following TM computes the reduction.

“On input (G, k), where G is an undirected graph and k is an
integer,

1. Output {(G,n — k), where n is the number of nodes in G.”

Correctness:

* (¢ has an independent set of size at least k iff it has a vertex
cover of size at most n — k.

Runtime:
e Reduction runs in linear time.
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VERTEX COVER reduces to INDEPENDENT SET

Theorem. VERTEX-COVER <, IND-SET
Proof. The following TM computes the reduction.

“On input (G, k), where G is an undirected graph and k is an
integer,

1. Output {(G,n — k), where n is the number of nodes in G.”

Correctness:

* (7 has a vertex cover of size at most k iff it has an
independent set of size at least n — k.

Runtime:
e Reduction runs in linear time.
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Subset Sum

SUBSET-SUM = {{wyq, ..., W,p,, t) |
there exists a subset of natural numbers wy,

Theorem: SUBSET-SUM is NP-complete

Claim 1: SUBSET-SUM is in NP

Claim 2: SUBSET-SUM is NP-hard
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3SAT <, SUBSET-SUM

Goal: Given a 3CNF formula ¢ on v variables and k clauses,
construct a SUBSET-SUM instance wy, ..., Wy,,, t such that

@ is satisfiable iff there exists a subset of w4, ...,w,,
thatsumto ¢

First attempt: Encode each literal £ of @ as a k-digit decimal
number w, = ¢4 ..., Where

= {1 if £ appears in clause i
l 0 otherwise



Example of the first attempt reduction

@ =1 VxyVx3)A(x VX,V x3)
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3SAT <, SUBSET-SUM

First attempt: Encode each literal £ of @ as a k-digit decimal
number w, = ¢4 ...C, Where

o {1 if £ appears in clause i
;=

0 otherwise
Claim: If ¢ is satisfiable, then there exists a subset of the
w,’s that “digit-wise” add up to “at least” 111 ...11

Two issues:
1) Need to enforce that exactly one of #, £ is set to 1
2) Need the subset to add up to exactly some target



3SAT <, SUBSET-SUM

Actual reduction: Encode each literal £ of @ asa (v + k)-
digit decimal number w, = by ... b,| ¢q ... ¢}, where

b — {1 if £ € {x;,x;} B {1 if £ appears in clause i
P = . ¢ = _
0 otherwise 0 otherwise

Also, include two copies each of 000...0|100...0,
000...0/010...0, ... 000...0|0...01

Claim: ¢ is satisfiable if and only if there exists a subset of
the numbers thatadduptot =111...11|333...33



Encode literal £ aswy = b; ... b,| ¢ ... i

Example of the reduction  whee 77
@ =1V Vxz)A(xg Vg Vxs) %= { g othernine.

0 otherwise

o {1 if £ appears in clause i
l 0 otherwise
Include two copies each of 000...0|100...0,

000...0|010...0, ... 000...0]0...01
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