BU CS 332 – Theory of Computation

<https://forms.gle/4op1rh6EDQPPKaJg6>

Lecture 23:

Reading:

• More NP-completeness

Sipser Ch 7.4-7.5

Mark Bun April 29, 2024 NP-completeness

"The hardest languages in NP"

Definition: A language B is NP-complete if

1) $B \in \text{NP}$, and

2) B is NP-hard: Every language $A \in NP$ is poly-time reducible to B, i.e., $A \leq_{p} B$

Last time:

 $TMSAT = \{ \langle N, w, 1^t \rangle \}$

NTM N accepts input w within t steps} is NP-complete

Cook-Levin Theorem: $\{\langle \varphi \rangle |$ Boolean formula φ is satisfiable is NP-complete New NP-complete problems from old

Lemma: If $A \leq_{p} B$ and $B \leq_{p} C$, then $A \leq_{p} C$

(poly-time reducibility is transitive)

Theorem: If $B \leq_{p} C$ for some NP-hard language B, then C is also NP-hard

The usual way to prove NP-completeness: If

1) $C \in NP$ and

2) There is an NP-complete language B (e.g., 3SAT, VERTEX-COVER, IND-SET, ...) such that $B \leq_{p} C$,

then C is also NP-complete.

New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

3 SAT (3-CNF Satisfiability)

Definitions:

- A literal either a variable of its negation x_5 , $\overline{x_7}$
	-
- A clause is a disjunction (OR) of literals Ex. $x_5 \vee \overline{x_7} \vee x_2$
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

$$
\text{Ex. } C_1 \land C_2 \land \dots \land C_m =
$$
\n
$$
(x_5 \lor \overline{x_7} \lor x_2) \land (\overline{x_3} \lor x_4 \lor x_1) \land \dots \land (x_1 \lor x_1 \lor x_1)
$$

 $3SAT = {\langle \varphi \rangle} |3 - CNF$ formula φ is satisfiable }

Some general reduction strategies

- Reduction from special case to general case Ex. $VERTEX - COVER \leq_{p} SET - COVER$ $3SAT \leq_{p} SAT$
- Reduction by simple equivalence Ex. $IND - SET \leq_{p} VERTEX - COVER$ $VERTEX - COVER \leq_D IND - SET$
- "Gadget" reductions Ex. $SAT \leq_{p} 3SAT$ $3SAT \leq_{p} IND - SET$

Independent Set

An **independent set** in an undirected graph G is a set of vertices that includes at most one endpoint of every edge.

 $IND - SET = \{(G, k) | G$ is an undirected graph containing an independent set with $\geq k$ vertices}

Which of the following are independent sets in this graph?

a)
$$
\{1\}
$$

\nb) $\{1, 5\}$
\nc) $\{2, 3, 6\}$
\nd) $\{3, 4, 6\}$

Independent Set is NP-complete

- 1) $IND SET \in NP$
- 2) Reduce $3SAT \leq p IND SET$

Proof of 1) The following gives a poly-time verifier for $IND - SET$ Certificate: Vertices $v_1, ..., v_k$

Verifier:

"On input $\langle G, k; \nu_1, ..., \nu_k \rangle$, where G is a graph, k is a natural number,

- 1. Check that $v_1, ..., v_k$ are distinct vertices in G
- 2. Check that there are no edges between the v_i 's."

Independent Set is NP-complete

- 1) $IND SET \in NP$
- 2) Reduce $3SAT \leq_p IND SET$

Proof of 2) The following TM computes a poly-time reduction. "On input $\langle \varphi \rangle$, where φ is a 3CNF formula,

- 1. Construct graph G from φ
	- \bullet G contains 3 vertices for each clause, one for each literal.
	- Connect 3 literals in a clause in a triangle.
	- Connect every literal to each of its negations.
- 2. Output (G, k) , where k is the number of clauses in φ ."

Example of the reduction

 $\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3)$

Proof of correctness for reduction

Let $k = #$ clauses and $l = #$ literals in φ

Correctness: φ is satisfiable iff G has an independent set of size k

 \Rightarrow Given a satisfying assignment, select one true literal from each triangle. This is an independent set of size k

 \Leftarrow Let S be an independent set in G of size k

- S must contain exactly one vertex in each triangle
- Set these literals to true, and set all other variables arbitrarily
- Truth assignment is consistent and all clauses are satisfied

Runtime: $O(k + l^2)$ which is polynomial in input size

Some general reduction strategies

- Reduction by simple equivalence $EX|IND - SET \leq p VERTEX - COVER|$ $VERTEX - \overline{COVER} \leq_{p} IND - SET$
- Reduction from special case to general case Ex. $VERTEX - COVER \leq p SET - COVER$ $3SAT \leq_{p} SAT$
- "Gadget" reductions Ex. $SAT \leq_{p} 3SAT$ $3SAT \leq_{p} IND - SET$

Vertex Cover

Given an undirected graph G , a **vertex cover** in G is a subset of nodes which includes at *least* one endpoint of every edge.

 $VERTEX - COVER = \{(G, k) | G \text{ is an undirected graph which has a }$ vertex cover with $\leq k$ vertices}

Independent Set and Vertex Cover

Claim. S is an independent set iff $V \setminus S$ is a vertex cover.

- \implies Let S be any independent set.
	- Consider an arbitrary edge (u, v) .
	- S is independent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V \setminus S$ or $v \in V \setminus S$.
	- Thus, $V \setminus S$ covers (u, v) .

 \Leftarrow Let $V \setminus S$ be any vertex cover.

- Consider two nodes $u \in S$ and $v \in S$.
- Then $(u, v) \notin E$ since $V \setminus S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge \Rightarrow S is an independent set.

INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET \leq_{p} VERTEX-COVER. What do we need to do to prove this theorem?

- a) Construct a poly-time nondet. TM deciding IND-SET
- b) Construct a poly-time deterministic TM deciding IND-SET
- c) Construct a poly-time nondet. TM mapping instances of IND- SET to instances of VERTEX-COVER
- d) Construct a poly-time deterministic TM mapping instances of IND-SET to instances of VERTEX-COVER
- e) Construct a poly-time nondet. TM mapping instances of VERTEX-COVER to instances of IND-SET
- f) Construct a poly-time deterministic TM mapping instances of VERTEX-COVER to instances of IND-SET

INDEPENDENT SET reduces to VERTEX COVER

- Theorem. IND-SET \leq_{p} VERTEX-COVER.
- Proof. The following TM computes the reduction.

"On input (G, k) , where G is an undirected graph and k is an integer,

1. Output $\langle G, n-k \rangle$, where *n* is the number of nodes in G."

Correctness:

• G has an independent set of size at least k iff it has a vertex cover of size at most $n - k$.

Runtime:

• Reduction runs in linear time.

VERTEX COVER reduces to INDEPENDENT SET

- Theorem. VERTEX-COVER \leq_{p} IND-SET
- Proof. The following TM computes the reduction.

"On input (G, k) , where G is an undirected graph and k is an integer,

1. Output $\langle G, n-k \rangle$, where *n* is the number of nodes in G."

Correctness:

• G has a vertex cover of size at most k iff it has an independent set of size at least $n - k$.

Runtime:

• Reduction runs in linear time.

Subset Sum

SUBSET-SUM = $\{ (w_1, ..., w_m, t) \mid$ there exists a subset of natural numbers $w_1, ..., w_m$ that sum to t}

Theorem: SUBSET-SUM is NP-complete

Claim 1: SUBSET-SUM is in NP

Claim 2: SUBSET-SUM is NP-hard

$3SAT \leq p$ SUBSET–SUM

Goal: Given a 3CNF formula φ on ν variables and k clauses, construct a SUBSET-SUM instance $w_1, ..., w_m$, t such that

 φ is satisfiable iff there exists a subset of $w_1, ..., w_m$ that sum to t

First attempt: Encode each literal ℓ of φ as a k-digit *decimal* number $w_{\ell} = c_1 ... c_k$ where

$$
c_i = \begin{cases} 1 \text{ if } \ell \text{ appears in clause } i \\ 0 \text{ otherwise} \end{cases}
$$

Example of the first attempt reduction $\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3)$

$3SAT \leq p$ SUBSET–SUM

First attempt: Encode each literal ℓ of φ as a k-digit *decimal* number $w_{\ell} = c_1 ... c_k$ where

$$
c_i = \begin{cases} 1 \text{ if } \ell \text{ appears in clause } i \\ 0 \text{ otherwise} \end{cases}
$$

Claim: If φ is satisfiable, then there exists a subset of the W_ℓ 's that "digit-wise" add up to "at least" 111 ... 11

Two issues:

- 1) Need to enforce that exactly one of ℓ , ℓ is set to 1
- 2) Need the subset to add up to exactly some target

 $3SAT \leq p$ SUBSET–SUM Actual reduction: Encode each literal ℓ of φ as a $(\nu + k)$ digit *decimal* number $w_{\ell} = b_1 ... b_n | c_1 ... c_k$ where $b_i = \{$ 1 if $\ell \in \{x_i, x_i\}$ 0 otherwise $c_i = \begin{cases} 0 & i \neq i \end{cases}$ 1 if ℓ appears in clause ι

Also, include two copies each of 000…0|100…0, 000…0|010…0, … 000…0|0…01

Claim: φ is satisfiable if and only if there exists a subset of the numbers that add up to $t = 111$... 11|333 ... 33

0 otherwise

Example of the reduction $\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3)$

Encode literal ℓ as $w_{\ell} = b_1 ... b_{\nu} | c_1 ... c_k$ where

$$
b_i = \begin{cases} 1 \text{ if } \ell \in \{x_i, \overline{x_i}\} \\ 0 \text{ otherwise} \end{cases}
$$

 $c_i = \{$ 1 if ℓ appears in clause ι 0 otherwise Include two copies each of 000…0|100…0, 000…0|010…0, … 000…0|0…01