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NP-completeness
“The hardest languages in NP”
Definition: A language 𝐵𝐵 is NP-complete if
 1) 𝐵𝐵 ∈ NP, and
 2) 𝐵𝐵 is NP-hard: Every language 𝐴𝐴 ∈ NP is poly-time 

                             reducible to 𝐵𝐵, i.e., 𝐴𝐴 ≤p 𝐵𝐵
Last time:
𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 = { 𝑁𝑁,𝑤𝑤, 1𝑡𝑡 ∣
NTM 𝑁𝑁 accepts input 𝑤𝑤 within 𝑡𝑡 steps} is NP-complete
Cook-Levin Theorem:
𝜑𝜑  Boolean formula 𝜑𝜑 is satisfiable  is NP-complete
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New NP-complete problems from old
Lemma: If 𝐴𝐴 ≤p 𝐵𝐵 and 𝐵𝐵 ≤p 𝐶𝐶, then 𝐴𝐴 ≤p 𝐶𝐶 
 (poly-time reducibility is transitive) 
Theorem: If 𝐵𝐵 ≤p 𝐶𝐶 for some NP-hard language 𝐵𝐵, then 𝐶𝐶 
is also NP-hard
The usual way to prove NP-completeness:
If
 1) 𝐶𝐶 ∈ NP and
 2) There is an NP-complete language 𝐵𝐵 (e.g., 3SAT,  

     VERTEX-COVER, IND-SET, …) such that 𝐵𝐵 ≤p 𝐶𝐶, 
then 𝐶𝐶 is also NP-complete.
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New NP-complete problems from old
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All problems below are NP-complete and hence poly-time reduce to one another!

SAT

3SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

by definition of NP-completeness



3𝑇𝑇𝐴𝐴𝑇𝑇 (3-CNF Satisfiability)

Definitions: 
• A literal either a variable of its negation    𝑥𝑥5 ,  𝑥𝑥7
• A clause is a disjunction (OR) of literals Ex. 𝑥𝑥5 ∨ 𝑥𝑥7 ∨ 𝑥𝑥2
• A 3-CNF is a conjunction (AND) of clauses where each 

clause contains exactly 3 literals
    Ex. 𝐶𝐶1 ∧ 𝐶𝐶2 ∧ … ∧ 𝐶𝐶𝑚𝑚 = 

𝑥𝑥5 ∨ 𝑥𝑥7 ∨ 𝑥𝑥2 ∧ 𝑥𝑥3 ∨ 𝑥𝑥4 ∨ 𝑥𝑥1 ∧ ⋯∧ 𝑥𝑥1 ∨ 𝑥𝑥1 ∨ 𝑥𝑥1

3𝑇𝑇𝐴𝐴𝑇𝑇 = 𝜑𝜑 3 − CNF formula 𝜑𝜑 is satisfiable 
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Some general reduction strategies
• Reduction from special case to general case

Ex. 𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 ≤p 𝑇𝑇𝑉𝑉𝑇𝑇 − 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉
       3𝑇𝑇𝐴𝐴𝑇𝑇 ≤p 𝑇𝑇𝐴𝐴𝑇𝑇

• Reduction by simple equivalence
Ex. 𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇 ≤p 𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉
      𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 ≤p 𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇

• “Gadget” reductions
Ex. 𝑇𝑇𝐴𝐴𝑇𝑇 ≤p 3𝑇𝑇𝐴𝐴𝑇𝑇
      3𝑇𝑇𝐴𝐴𝑇𝑇 ≤p 𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇
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Independent Set
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An independent set in an undirected graph 𝐺𝐺 is a set of vertices that 
includes at most one endpoint of every edge.

𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇 = 𝐺𝐺,𝑘𝑘 𝐺𝐺 is an undirected graph containing an 

                                              independent set with ≥ 𝑘𝑘 vertices}

1

2

3

4

5

6

Which of the following are 
independent sets in this graph?

a)  {1}
b)  {1, 5}
c)  {2, 3, 6}
d)  {3, 4, 6}



Independent Set is NP-complete
1)  𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇 ∈ NP
2) Reduce 3𝑇𝑇𝐴𝐴𝑇𝑇 ≤p 𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇

Proof of 1) The following gives a poly-time verifier for 𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇
Certificate: Vertices 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘
Verifier:
 “On input 𝐺𝐺,𝑘𝑘; 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘 , where 𝐺𝐺 is a graph, 𝑘𝑘 is a natural number,
1.  Check that 𝑣𝑣1, …𝑣𝑣𝑘𝑘 are distinct vertices in 𝐺𝐺
2. Check that there are no edges between the 𝑣𝑣𝑖𝑖’s.”
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Independent Set is NP-complete
1)  𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇 ∈ NP
2) Reduce 3𝑇𝑇𝐴𝐴𝑇𝑇 ≤p 𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇

Proof of 2) The following TM computes a poly-time reduction.
 “On input 𝜑𝜑 , where 𝜑𝜑 is a 3CNF formula,
1. Construct graph 𝐺𝐺 from 𝜑𝜑

• 𝐺𝐺 contains 3 vertices for each clause, one for each literal.
• Connect 3 literals in a clause in a triangle.
• Connect every literal to each of its negations.

2. Output 𝐺𝐺,𝑘𝑘 , where 𝑘𝑘 is the number of clauses in 𝜑𝜑.”
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Example of the reduction
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𝜑𝜑 = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3



Proof of correctness for reduction
Let 𝑘𝑘 = # clauses and 𝑙𝑙 = # literals in 𝜑𝜑
Correctness: 𝜑𝜑 is satisfiable iff 𝐺𝐺 has an independent set of size 𝑘𝑘

⟹ Given a satisfying assignment, select one true literal from each 
triangle. This is an independent set of size 𝑘𝑘

⟸ Let 𝑇𝑇 be an independent set in 𝐺𝐺 of size 𝑘𝑘
• 𝑇𝑇 must contain exactly one vertex in each triangle
• Set these literals to true, and set all other variables arbitrarily
• Truth assignment is consistent and all clauses are satisfied

Runtime: 𝐶𝐶(𝑘𝑘 + 𝑙𝑙2) which is polynomial in input size
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Some general reduction strategies
• Reduction by simple equivalence

Ex. 𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇 ≤p 𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉
      𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 ≤p 𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇

• Reduction from special case to general case
Ex. 𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 ≤p 𝑇𝑇𝑉𝑉𝑇𝑇 − 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉
       3𝑇𝑇𝐴𝐴𝑇𝑇 ≤p 𝑇𝑇𝐴𝐴𝑇𝑇

• “Gadget” reductions
Ex. 𝑇𝑇𝐴𝐴𝑇𝑇 ≤p 3𝑇𝑇𝐴𝐴𝑇𝑇
      3𝑇𝑇𝐴𝐴𝑇𝑇 ≤p 𝐼𝐼𝑁𝑁𝐼𝐼 − 𝑇𝑇𝑉𝑉𝑇𝑇
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Vertex Cover
Given an undirected graph 𝐺𝐺, a vertex cover in 𝐺𝐺 is a subset of 
nodes which includes at least one endpoint of every edge.

𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 = { 𝐺𝐺,𝑘𝑘 ∣ 𝐺𝐺 is an undirected graph which has a 

 vertex cover with ≤ 𝑘𝑘 vertices}
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Independent Set and Vertex Cover
Claim. 𝑇𝑇 is an independent set iff 𝑉𝑉 ∖  𝑇𝑇 is a vertex cover.
⟹ Let 𝑇𝑇 be any independent set.

• Consider an arbitrary edge (𝑢𝑢, 𝑣𝑣).
• 𝑇𝑇 is independent ⟹ 𝑢𝑢 ∉ 𝑇𝑇 or 𝑣𝑣 ∉ 𝑇𝑇 ⟹  𝑢𝑢 ∈ 𝑉𝑉 ∖  𝑇𝑇 or 𝑣𝑣 ∈ 𝑉𝑉 ∖  𝑇𝑇.
• Thus, 𝑉𝑉 ∖  𝑇𝑇 covers (𝑢𝑢, 𝑣𝑣).

⟸ Let 𝑉𝑉 ∖  𝑇𝑇 be any vertex cover.
• Consider two nodes 𝑢𝑢 ∈ 𝑇𝑇 and 𝑣𝑣 ∈ 𝑇𝑇.
• Then (𝑢𝑢, 𝑣𝑣) ∉ 𝑉𝑉 since 𝑉𝑉 ∖  𝑇𝑇 is a vertex cover.
• Thus, no two nodes in 𝑇𝑇 are joined by an edge ⟹ 𝑇𝑇 is an independent set.
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INDEPENDENT SET reduces to VERTEX COVER
Theorem. IND-SET ≤p VERTEX-COVER.
What do we need to do to prove this theorem?

a) Construct a poly-time nondet. TM deciding IND-SET
b) Construct a poly-time deterministic TM deciding IND-SET
c) Construct a poly-time nondet. TM mapping instances of IND-

SET to instances of VERTEX-COVER
d) Construct a poly-time deterministic TM mapping instances of 

IND-SET to instances of VERTEX-COVER
e) Construct a poly-time nondet. TM mapping instances of 

VERTEX-COVER to instances of IND-SET
f) Construct a poly-time deterministic TM mapping instances of 

VERTEX-COVER to instances of IND-SET
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INDEPENDENT SET reduces to VERTEX COVER
Theorem. IND-SET ≤p VERTEX-COVER.
Proof.  The following TM computes the reduction.
“On input 𝐺𝐺, 𝑘𝑘 , where 𝐺𝐺 is an undirected graph and 𝑘𝑘 is an 
integer,
1. Output 𝐺𝐺,𝑛𝑛 − 𝑘𝑘 , where 𝑛𝑛 is the number of nodes in 𝐺𝐺.”

Correctness: 
• 𝐺𝐺 has an independent set of size at least 𝑘𝑘 iff it has a vertex 

cover of size at most 𝑛𝑛 − 𝑘𝑘.
Runtime:
• Reduction runs in linear time.
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VERTEX COVER reduces to INDEPENDENT SET
Theorem. VERTEX-COVER ≤p IND-SET
Proof.  The following TM computes the reduction.
“On input 𝐺𝐺, 𝑘𝑘 , where 𝐺𝐺 is an undirected graph and 𝑘𝑘 is an 
integer,
1. Output 𝐺𝐺,𝑛𝑛 − 𝑘𝑘 , where 𝑛𝑛 is the number of nodes in 𝐺𝐺.”

Correctness: 
• 𝐺𝐺 has a vertex cover of size at most 𝑘𝑘 iff it has an 

independent set of size at least 𝑛𝑛 − 𝑘𝑘.
Runtime:
• Reduction runs in linear time.
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Subset Sum
SUBSET-SUM = { 𝑤𝑤1, … ,𝑤𝑤𝑚𝑚, 𝑡𝑡 ∣
there exists a subset of natural numbers 𝑤𝑤1, … ,𝑤𝑤𝑚𝑚 that sum to 𝑡𝑡}

Theorem: SUBSET-SUM is NP-complete

Claim 1: SUBSET-SUM is in NP

Claim 2: SUBSET-SUM is NP-hard

4/29/2024 CS332 - Theory of Computation 18



3SAT ≤𝑝𝑝 SUBSET−SUM
Goal: Given a 3CNF formula 𝜑𝜑 on 𝑣𝑣 variables and 𝑘𝑘 clauses, 
construct a SUBSET-SUM instance 𝑤𝑤1, … ,𝑤𝑤𝑚𝑚, 𝑡𝑡 such that
𝜑𝜑 is satisfiable     iff     there exists a subset of 𝑤𝑤1, … ,𝑤𝑤𝑚𝑚 
                   that sum to 𝑡𝑡

First attempt:  Encode each literal ℓ of 𝜑𝜑 as a 𝑘𝑘-digit decimal 
number 𝑤𝑤ℓ = 𝑐𝑐1 … 𝑐𝑐𝑘𝑘 where

 𝑐𝑐𝑖𝑖 =  �1 if ℓ appears in clause 𝑖𝑖
0 otherwise
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Example of the first attempt reduction

4/29/2024 CS332 - Theory of Computation 20

𝜑𝜑 = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3



3SAT ≤𝑝𝑝 SUBSET−SUM
First attempt:  Encode each literal ℓ of 𝜑𝜑 as a 𝑘𝑘-digit decimal 
number 𝑤𝑤ℓ = 𝑐𝑐1 … 𝑐𝑐𝑘𝑘 where

 𝑐𝑐𝑖𝑖 =  �1 if ℓ appears in clause 𝑖𝑖
0 otherwise

 

Claim: If 𝜑𝜑 is satisfiable, then there exists a subset of the 
𝑤𝑤ℓ’s that “digit-wise” add up to “at least” 111 … 11

Two issues: 
1) Need to enforce that exactly one of ℓ, �ℓ is set to 1
2) Need the subset to add up to exactly some target

4/29/2024 CS332 - Theory of Computation 21



3SAT ≤𝑝𝑝 SUBSET−SUM
Actual reduction:  Encode each literal ℓ of 𝜑𝜑 as a (𝑣𝑣 + 𝑘𝑘)-
digit decimal number 𝑤𝑤ℓ = 𝑏𝑏1 … 𝑏𝑏𝑣𝑣|  𝑐𝑐1… 𝑐𝑐𝑘𝑘  where

 𝑏𝑏𝑖𝑖 =  �1 if ℓ ∈ {𝑥𝑥𝑖𝑖 , �𝑥𝑥𝑖𝑖}
0 otherwise

 𝑐𝑐𝑖𝑖 = �1 if ℓ appears in clause 𝑖𝑖
0 otherwise

 

Also, include two copies each of 000…0|100…0, 
000…0|010…0, … 000…0|0…01

Claim: 𝜑𝜑 is satisfiable if and only if there exists a subset of 
the numbers that add up to 𝑡𝑡 = 111 … 11|333 … 33
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Example of the reduction
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𝜑𝜑 = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3

Encode literal ℓ as 𝑤𝑤ℓ = 𝑏𝑏1 … 𝑏𝑏𝑣𝑣|  𝑐𝑐1… 𝑐𝑐𝑘𝑘 
where

 𝑏𝑏𝑖𝑖 =  �1 if ℓ ∈ {𝑥𝑥𝑖𝑖 , �𝑥𝑥𝑖𝑖}
0 otherwise

 

 𝑐𝑐𝑖𝑖 = �1 if ℓ appears in clause 𝑖𝑖
0 otherwise

 

Include two copies each of 000…0|100…0, 

000…0|010…0, … 000…0|0…01
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