
CS 332: Theory of Computation Prof. Mark Bun
Boston University April 16, 2025

Homework 10 – Due Tuesday, April 22, 2025 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without as-
sistance, and be ready to explain them orally to the course staff if asked. You must also identify
your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from
outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Note You may use various generalizations of the Turing machine model we have seen in class, such as
TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization,
state clearly and precisely what model you are using.

Problems There are 4 required problems.

1. (Protein Folding) In the translation stage of protein biosynthesis, a ribosome decodes mRNA to
produce a chain of amino acids (a polypeptide). This polypeptide then folds into an active protein
in order to perform a biological function in the cell.

Here we describe a massive simplification of the problem of determining whether a polypeptide can
fold into a stable protein. For us, a polypeptide is a string s ∈ {0, 1}k for some natural number
k. (The 1’s correspond to hydrophobic amino acids and the 0’s correspond to hydrophilic ones.)
A folding is an embedding of the indices 1, . . . , k into a two-dimensional k × k grid. Formally, a
folding is a function f : [k] → [k]× [k] with the following two properties:

1) Consecutive indices always map to adjacent grid cells. Formally, for every i = 1, 2, . . . , k − 1, if
f(i) = (x, y) we have f(i+ 1) ∈ {(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)}, and
2) The function f is one-to-one (injective), i.e., it never maps two different indices to the same grid
cell. Formally, for every i ̸= j, we have f(i) ̸= f(j).

If you’ve ever played the game “snake”, all this is saying is that the sequence of cells f(1), f(2), . . . , f(k)
form a snake that does not intersect itself.

(a) Is the function f : [4] → [4] × [4] defined by f(1) = (2, 2), f(2) = (2, 3), f(3) = (3, 3), f(4) =
(3, 4) a valid folding? It may help to draw the picture and see if it forms a snake.

(b) Let s ∈ {0, 1}k be a polypeptide, f : [k] → [k]× [k] be a folding, and d be a natural number.
We say f is a d-stable folding if there are at least d “hydrophobic bonds,” which are distinct
pairs of indices i < j such that si = sj = 1 and f(i) and f(j) are adjacent cells in the grid.

For example, let s = 10110 and let f(1) = (1, 2), f(2) = (1, 3), f(3) = (2, 3), f(4) = (2, 2), f(5) =
(2, 1). Explain why f is a 2-stable folding for s.

(c) Define the language SF = {⟨s, d⟩ | there exists a d-stable folding of s}. Prove that SF is in
NP by showing that it can be decided by nondeterministic TM in polynomial time. Be sure to
describe your NTM, explain why it is correct, and explain why it halts in poly-time on every
computational branch.
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2. (NFA Acceptance) Let ANFA = {⟨N,w⟩ | N is an NFA that accepts string w}. Prove that ANFA

is in NP by giving a polynomial-time verifier. Be sure to describe the structure of a valid certificate,
describe your (deterministic) verifier, explain why the verifier is correct, and explain why the verifier
runs in time polynomial in the input length.

Hint: You can use without proof the fact that if an NFA N accepts w, it can do so via a computa-
tional path consisting of O(|w|2) transitions. You’re encouraged to think about how to prove this
by the pigeonhole principle.

3. (Satisfiability)

(a) Let φ(x, y, z) = (x ∧ y) ∨ (x ∧ z). Is φ satisfiable? If so, exhibit a satisfying assignment.
Otherwise, explain why it is not satisfiable.

(b) Let ψ(x, y, z) = (x∨ y)∧ (x∨ y)∧ (x∨ z)∧ (x∨ z). Is ψ satisfiable? If so, exhibit a satisfying
assignment. Otherwise, explain why it is not satisfiable.

(c) Define the languageXSAT = {⟨φ1, φ2⟩ | there exists an assignment x satisfying exactly one of φ1, φ2}.
Show that XSAT is in NP. You may either give a poly-time NTM or describe a poly-time
verifier; it’s your choice. In either case, give an explanation of correctness and of runtime.

4. (Search vs. decision) Given m BU Hub areas and a course catalog consisting of k classes fulfilling
those areas, you wish to determine whether there is a small set of courses that will supply you with
all of your Hub requirements. Specifically, each course i = 1, . . . , k supplies you with a set Si ⊆ [m]
of Hub requirements. A valid course plan is a collection T of courses that, taken together, supply
you with all m Hub requirements: ∪i∈TSi = [m]. Define the language HUB = {⟨S1, . . . , Sk, r⟩ |
there exists a valid course plan T ⊆ [k] of size |T | ≤ r}.
In this problem, you will prove that if P = NP, you can find a smallest plan of classes that will
fulfill all of your Hub requirements in polynomial time.

(a) Prove that HUB ∈ NP. You may either give a poly-time NTM or describe a poly-time verifier;
it’s your choice. In either case, give an explanation of correctness and of runtime.

(b) If P = NP, your solution to part (a) implies that HUB ∈ P as well. That is, in polynomial
time you can decide whether r classes is enough. Assume you have a subroutine that solves
this problem in polynomial time. Show how to use it repeatedly to find a smallest valid course
plan in polynomial time. (Note that your algorithm should output the actual plan, i.e., set of
classes.)

Hint: Similar to Sipser Problem 7.40, solved in the book.
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