
CS 332: Theory of Computation Prof. Mark Bun
Boston University January 28, 2025

Homework 2 – Due Tuesday, February 4 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without as-
sistance, and be ready to explain them orally to the course staff if asked. You must also identify
your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from
outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Problems There are 6 required problems and two bonus problems.

1. For each of the following languages, (i) give a plain English description of the language, and (ii)
give two examples of strings in the language and two examples of strings that are in Σ∗ but outside
the language.

(a) L1 = {w ∈ {0, 1}∗ | w = wR}
(b) L2 = {xaay | x, y ∈ {a, b}∗} ∪ {xbby | x, y ∈ {a, b}∗}
(c) L3 = {x#y#z | x, y, z ∈ {0, 1}∗ and x + y = z}. (Here, you should view x, y, z as the binary

representations of non-negative integers, with the most significant bit on the left.)

2. For each of the following languages, (i) describe the language using set-builder notation and
union/intersection/complement/reverse/concatenation operations (the notation used in Problem 1),
and (ii) give two examples of strings in the language and two examples of strings that are in Σ∗

but outside the language.

(a) L4 = the set of all strings over alphabet {a, b, c} that have length at least 3 and have b as
their third symbol.

(b) L5 = the set of all strings over alphabet {0, 1} that either start with 0 and have odd length,
or start with 1 and have even length.

(c) L6 = the set of all strings over alphabet {a, b} that contain neither aaab nor baaa as substrings.

3. Which of the following statements are true or false, for all alphabets Σ? For each, provide either a
proof or a counterexample.

(a) For all strings x, y, z ∈ Σ∗, we have |x ◦ (yz)R| = |x| + |y| + |z|. (Recall that ◦ denotes
concatenation.)

(b) For all languages L1, L2 ⊆ Σ∗, we have (L1 ◦ L2)
R = LR

2 ◦ LR
1 .

(c) For all languages L ⊆ Σ∗, we have L ◦ {ε} = L ◦ ∅.
(d) For all languages L1, L2, L3 ⊆ Σ∗, we have L1 ◦ (L2 ∩ L3) = (L1 ◦ L2) ∩ (L1 ◦ L3).
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4. Consider the following state diagram of a DFA M using alphabet Σ = {A,B}.
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B
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(a) What is the start state of M?

(b) What is the set of accept states of M?

(c) Give a formal description of the machine M (i.e., as a 5-tuple).

(d) What is the language recognized by M? (Hint: It has a simple English description using
modular arithmetic.)

5. This problem will be autograded using AutomataTutor. Visit https://automata-tutor.live-lab.
fi.muni.cz/ and register for an account using your name and @bu.edu email address (it is im-
portant for recording grades that the information for your account match the information on the
course list provided by the university). We’ll the link to enroll for this course on Piazza.

Give state diagrams of DFAs with as few states as you can recognizing the following languages.
You may assume that the alphabet in each case is Σ = {0, 1}.

(a) L1 = {w | w begins with 1 and ends with 00}.
(b) L2 = {w | w contains at most three 1’s}.
(c) L3 = {w | w contains the substring 010}.

Give state diagrams of NFAs with as few states as you can recognizing the following languages.
You may assume that the alphabet in each case is Σ = {0, 1}.

(d) L4 = {xyz | string x consists only of 0’s, string y consists only of 1’s, and string z consists
only of 0’s and contains at least one 0}.

(e) L5 = {w | w contains substrings 100 and 10 which do not overlap}.

6. Draw (and include in the PDF you submit to Gradescope) state diagrams of DFAs with as few
states as you can recognizing the following languages. You may assume that the alphabet in each
case is Σ = {0, 1}.

(a) L6 = {w | w is a string of the form x1y1x2y2 . . . xnyn for some integer n ≥ 0 such
that xi, yi ∈ {0, 1} and xi = yi for all i}.

(b) L7 = {w | w represents a binary number that is congruent to 2 modulo 3}. In other words,
this number minus 2 is divisible by 3. The number is presented starting from the most
significant bit and can have leading 0s.
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7. Bonus Problem. In this problem, you’ll explore how to formally define and analyze properties
of strings. Let Σ be an alphabet. A string over alphabet Σ is defined recursively as follows. It
is either the empty string ε (base case) or takes the form ax where a ∈ Σ and x is itself a string
(recursive case). The length of the string x can then be defined as follows:

|x| =

{
0 if x = ε

1 + |z| if x = az for a ∈ Σ and z ∈ Σ∗.

Similarly, the concatenation of two strings x, y can be defined as

xy =

{
y if x = ε

a(zy) if x = az for a ∈ Σ and z ∈ Σ∗.

These definitions let us give inductive proofs of properties of strings. For instance, consider the
following claim, which says that the length of the concatenation of two strings is the sum of the
lengths of those strings.

Claim. For any two strings x, y, we have |xy| = |x|+ |y|.

To prove this, let x and y be arbitrary strings. We will prove this by induction on the length
n = |x|. As our base case, suppose n = 0. Then x = ε, so

|xy| = |εy| (assumption on x)

= |y| (definition of concatenation)

= |ε|+ |y| (definition of length)

= |x|+ |y| (assumption on x)

as we wanted. Now assume as our inductive hypothesis that the claim is true for length n; we want
to show it is true for length n+ 1. In this case, we have x = az for some string z of length n. So

|xy| = |a(zy)| (definition of concatenation)

= 1 + |zy| (definition of length)

= 1 + |z|+ |y| (inductive hypothesis)

= |x|+ |y| (definition of length).

(a) Given a string x ∈ {0, 1}∗, let sort(x) denote the string obtained by sorting the characters of
x so that all 0’s appear before all 1’s. For example, sort(10110) = 00111. Give a recursive
definition of the sort function along the lines of what we did with length above.

(b) Give an inductive proof that | sort(x)| = |x| for every string x ∈ {0, 1}∗.
(c) Prove that sort(sort(x)) = sort(x) for every string x ∈ {0, 1}∗. Hint: Instead of trying to prove

this directly by induction, it might be useful to introduce some auxiliary recursively-defined
functions and prove statements about those.

8. Bonus Problem. Show that for any natural number n, the language
MODn = {w | w represents a binary number that is divisible by n} is regular. The number is
presented starting from the most significant bit and can have leading 0’s.
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