
CS 332: Theory of Computation Prof. Mark Bun
Boston University March 7, 2025

Homework 6 – Due Tuesday, March 18, 2025 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without as-
sistance, and be ready to explain them orally to the course staff if asked. You must also identify
your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from
outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Note You may use various generalizations of the Turing machine model we have seen in class, such as
TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization,
state clearly and precisely what model you are using.

Problems There are 4 required problems.

1. (String sorting) We’ve introduced Turing machines as recognizers / deciders for languages, i.e.,
decision problems with yes-no answers. But it also often useful to consider Turing machines that
compute functions with more complex outputs. Namely, a TM computes a function f : Σ∗ → Σ∗ if
given w ∈ Σ∗ on its input tape, it halts with f(w) on its output tape.

(a) Given a string w, let sort(w) denote the string obtained by sorting the characters of w so that
all 0’s appear before all 1’s. For example, sort(011011) = 001111.

Write a Turing machine Msort that, given a string w on its tape, halts with sort(w) on its tape.
Implement your TMs in the following environment: http://morphett.info/turing/turing.html.
Your solution should contain:

(i) An implementation-level description of your code.

(ii) Code that we can copy from your submission and run directly on that website. (Please
add comments and make it as readable as possible.) There is a separate dropbox on
Gradescope that will accept your code submissions.

(b) Define the shuffle operation on languages by shuffle(L) = {w | sort(w) ∈ L}. Show that
the class of decidable languages is closed under shuffle. You can use an implementation-level
description on a multi-tape TM to solve this part of the problem.

Hint: You may want to use the TM Msort you constructed in part (a) as a subroutine. If
you do so, there’s no need to rewrite out the description of this TM. You can just include a
statement like “Run TM Msort on”

2. (Eco-friendly TM) An eco-friendly Turing machine (ETM) is the same as an ordinary (determin-
istic) one-tape Turing machine, but it can read and write on both sides of each tape square: front
and back.

At the end of each computation step, the head of the eco-friendly TM can move left (L), move right
(R), or flip to the other side of the tape (F).

(a) Give a formal definition of the syntax of the transition function of an eco-friendly TM. (Modify
Part 4 of Definition 3.3 on page 168 of the textbook.)

(b) Show that eco-friendly TMs recognize the class of Turing-recognizable languages. That is, use
a simulation argument to show that they have exactly the same power as ordinary TMs.

You may use implementation-level descriptions of multi-tape TMs to solve this problem.

1

3. (Nondeterministic Turing machines)

(a) Give a high-level description of a nondeterministic (multi-tape) TM deciding the following
language over {0, 1,#}: {s#a1#a2# . . .#an | where n is a positive integer, a1, . . . , an are
binary integers such that some subset of a1, . . . , an sums to exactly s}. Explain why your NTM
is correct.

Note: It is possible to do this with a deterministic TM, but we want to give you practice with
the concept of nondeterminism. So your solution must use an NTM’s ability to nondetermin-
istically guess in a meaningful way.

(b) Given a Turing machine M , give a high-level description of a nondeterministic (multi-tape)
TM recognizing (L(M))∗. Again, your solution must use nondeterminism in a meaningful way.
Explain why your NTM is correct.

(c) Explain why part (b) implies that the Turing-recognizable languages are closed under star.

(d) Explain (briefly) how you would modify your previous construction and its analyses to show
that the decidable languages are closed under star.

Hint: Recall that a nondeterministic TM is a decider if it halts on every input, on every
computation branch. The class of languages decided by NTMs is exactly the class of decidable
languages.

4. (Universal DFA) This short programming exercise aims to give you intuition about Turing ma-
chines that take more complicated objects as inputs – namely, DFAs. This week, we’ll study the
language ADFA = {⟨D,w⟩ | D is a DFA accepting input w}. Deciding membership in this language
corresponds to the following computational problem: Given a DFA D and a string w, does D accept
on input w?.

(a) The file universal dfa.py contains starter code that will help you implement a Turing
machine Python program solving this problem. Implement a program that prompts the user
for an (appropriately encoded) DFA D and a binary string w, outputting i) the sequence of
states D enters when run on w, and ii) whether D accepts or rejects input w. The starter
code file describes the expected syntax for the input and output of your solution. There is a
separate dropbox on Gradescope that will accept your code submissions.

This is not a software engineering class, so your program is allowed to fail arbitrarily (including
failing silently) if its inputs do not correctly encode a DFA and a binary string.

If you don’t like Python, you can implement your program in another high-level programming
language (Java, C++, Haskell, . . .) that the grading staff can read. (No Malbolge, please.)
The downside is that you won’t have the starter code to parse the input for you.

IMPORTANT: DO NOT CHANGE THE NAME OF THE FILE universal dfa.py. If you
do, it will not be correctly auto-graded.

(b) Let w be the result of converting the numeric part of your BU UID to binary. (It doesn’t
matter exactly how you do this conversion. I just want you to feel some personal attachment
to the string w you generate here.) Record the input and output of your program when you
use it to determine whether the DFA represented by the following state diagram accepts input
w.

2

q0start

q1 q2

q3

1

0

0
1

1

0

0

1

The following two problems are postponed until Homework 7, but I’m leaving them
here in case you want to start thinking about them now.

5. (SUBDFA,REX) Consider the following computational problem: Given a DFA D and a regular
expression R, is the language recognized by D a subset of the language generated by R?

(a) Formulate this problem as a language SUBDFA,REX.

(b) Show that SUBDFA,REX is decidable by giving a high-level description of a Turing machine
that decides it, together with an explanation of correctness.

Hint: Following the examples in Sipser Chapter 4.1, you may assume that the procedures
we’ve seen in class for converting back and forth between automata and regular expressions
can be implemented on Turing machines.

6. (Bonus problem) Extend your code from Problem 4 to solve the problem corresponding to the
language

EDFA = {⟨D⟩ | D is a DFA recognizing the empty language}.

That is, your program should prompt the user for an encoded DFA D and output “accept” if
L(D) = ∅ and “reject” otherwise.

3

