
CS 332: Theory of Computation Prof. Mark Bun
Boston University April 8, 2025

Homework 9 – Due Tuesday, April 15, 2024 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without as-
sistance, and be ready to explain them orally to the course staff if asked. You must also identify
your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from
outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Note You may use various generalizations of the Turing machine model we have seen in class, such as
TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization,
state clearly and precisely what model you are using.

Problems There are 3 required problems.

1. (Logs and Asymptotic Notation) Use the formal definitions of O and o notation to prove the
following statements.

(a) Let x, y, z be variables representing non-negative numbers. Simplify the following expression

so it is of the form a log2 x + b log2 y + c log2 z, where a, b, c are constants: log2

(√
x·y
z2

)
+

log4(16
log2 y).

(b) Prove that n2(3 log7 n + n) = O(n3) by showing that there exists a constant c > 0 and a
natural number n0 such that n2(3 log7 n + n) ≤ cn3 for every n ≥ n0. (Hint: You can use
without proof the fact that log2 n ≤ n for every n ≥ 1.)

(c) Prove that 3n = o(n2) by showing that for every constant c > 0, there exists a natural number
n0 such that 3n ≤ cn2 for every n ≥ n0.

(d) Prove that 3
√
n = 2o(n) by using the fact that f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

2. (Polynomial-Time Algorithms)

(a) Let A = {03m | m ≥ 0}. Show that A ∈ TIME(n log n) and A ∈ SPACE(n) by i) giving an
implementation-level description of a basic, single-tape Turing machine M that decides A,
ii) briefly explain why your TM correctly decides A, and iii) analyzing the running time and
space usage of M .

(b) An undirected graph G = (V,E) is triangle-free if for every triple of vertices u, v, w, it is
not the case that (u, v), (v, w), and (w, u) are all edges in the graph. Let TF = {⟨G⟩ |
G is triangle-free}. Show that TF ∈ P by i) giving a high-level description of a polynomial-
time algorithm deciding TF , ii) analyzing the correctness of your algorithm, and iii) explaining
why your algorithm runs in polynomial time.

You don’t need to specify the exact polynomial runtime that your algorithm runs in, since this
may depend on implementation details that are suppressed in a high-level description. Just
give a convincing argument that the runtime is polynomial as in the examples in Chapter 7.2
of Sipser.

(c) The Fibonacci sequence is defined by the following recurrence: F0 = 0, F1 = 1, and Fn =
Fn−1 + Fn−2 for every n ≥ 2. Prove that there is no polynomial-time algorithm that takes as
input a natural number n (written in binary) and outputs (i.e., writes to its tape) the number
Fn (again, written in binary).

1



Hint: How big can the numbers Fn get as a function of n?

(d) Give a high-level description of a polynomial-time algorithm that takes as input a natural
number n (written in unary, i.e., as the string 1n) and outputs the number Fn (written in
binary). Explain why your algorithm is correct and why it runs in polynomial time.

Hint: You can use without proof the fact that Turing machines can perform basic arithmetic
operations on binary numbers, like addition, in polynomial time.

(e) Show that the complexity class P is closed under the union operation.

3. (Hierarchy Theorems) For this problem, you can assume without proof that any reasonable-
looking function is time-constructible.

(a) Show that P ⊆ TIME(2n).

(b) Use the time hierarchy theorem to show that EXP ̸⊆ TIME(2n).

(c) Combine parts (a) and (b) to conclude that P ̸= EXP.

2


