# BU CS 332 – Theory of Computation

Link to polls: https://forms.gle/eeRKEZf5phJ3GBZr5

#### Lecture 2:

- Parts of a Theory of Computation
- Sets, Strings, and Languages



Reading: Sipser Ch 0

**Reminders:** 

 HW1 due tomorrow night (Tue, 11:59PM)

#### Mark Bun

#### January 27, 2025

## What makes a good theory?

- General ideas that apply to many different systems
- Expressed simply, abstractly, and precisely

#### Parts of a Theory of Computation

- Models for machines (computational devices)
- Models for the problems machines can be used to solve
- Theorems about what kinds of machines can solve what kinds of problems, and at what cost

# What is a (Computational) Problem?

For us: A problem will be the task of determining whether a *string* is in a *language* 

E.g. <u>Parity</u>: Given a string of a's and b's, does it contain an even number of a's?

# What is a (Computational) Problem?

For us: A problem will be the task of determining whether a *string* is in a *language* 

- Alphabet: A finite set  $\Sigma$  Ex.  $\Sigma = \{a, b\}$
- String: A finite concatenation of alphabet symbols Ex. bba, ababb

 $\varepsilon$  denotes empty string, length 0

 $\Sigma^*$  = set of all strings using symbols from  $\Sigma$ Ex. {a, b}\* = { $\varepsilon$ , a, b, aa, ab, ba, bb, ... }

• Language: A set  $L \subseteq \Sigma^*$  of strings

# Examples of Languages

Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

 $\Sigma = \{a, b\}$   $L = \{x \in \{a, b\}^* | x has an even # of a's\}$ 

Primality: Given a natural number x (represented in binary), is x prime?

 $\Sigma = \{0, 1\}$   $L = \{x \in \{0, 1\}^* \mid x \text{ is the binary rep. of a prime}\}$ 

Halting Problem: Given a C program, can it ever get stuck in an infinite loop?

 $\Sigma$  = Extended ASCII  $L = \{P \in \Sigma^* \mid P \text{ describes a C program}$ that loops forever on some input $\}$ 

# Primality language

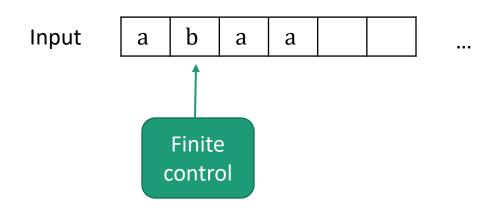
Which best represents the language corresponding to the Primality problem? (I.e., strings over the alphabet {0, 1} that are binary representations of prime numbers.)

Let's say the most significant bit is on the left, so "100" is the binary representation of 4.

- (a) {2, 3, 5, 7, ... }
- (b) {10, 11, 101, 111, ... }
- (c) {11, 111, 11111, 111111, ... }
- (d)  $\{11, 011, 101, 110, 111, 0111, ...\}$

#### Machine Models

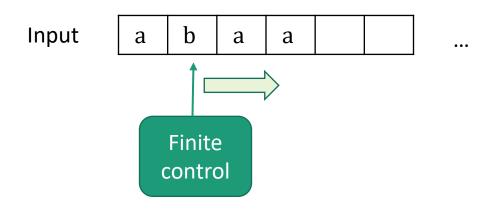
Computation is the processing of information by the **unlimited application** of a **finite set** of operations or rules



<u>Abstraction</u>: We don't care how the control is implemented. We just require it to have a finite number of states, and to transition between states using fixed rules.

#### Machine Models

• <u>Finite Automata (FAs)</u>: Machine with a finite amount of unstructured memory

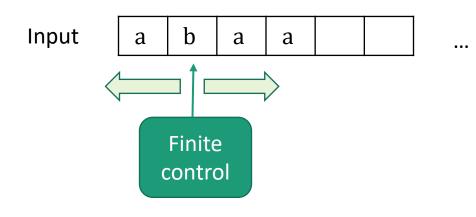


Control scans left-to-right Can check simple patterns Can't perform unlimited counting

Useful for modeling chips, simple control systems, choose-yourown adventure games...

#### Machine Models

• <u>Turing Machines (TMs)</u>: Machine with unbounded, unstructured memory



Control can scan in both directions Control can both read and <u>write</u>

Model for general sequential computation Church-Turing Thesis: Everything we intuitively think of as "computable" is computable by a Turing Machine

## What theorems would we like to prove?

We will define <u>classes</u> of languages based on which machines can solve the associated computational problems

Inclusion: Every language recognizable by a FA is also recognizable by a TM

Non-inclusion: There exist languages recognizable by TMs which are not recognizable by FAs

**Completeness:** Identify a "hardest" language in a class

Robustness: Alternative definitions of the same class

Ex. Languages recognizable by FAs = regular expressions

# Why study theory of computation?

- You'll learn how to formally reason about computation
- You'll learn the technology-independent foundations of CS

#### Philosophically interesting questions:

- Are there well-defined problems which cannot be solved by computers?
- Can we always find the solution to a puzzle faster than trying all possibilities?
- Can we say what it means for one problem to be "harder" or "no harder" than another?

# Why study theory of computation?

- You'll learn how to formally reason about computation
- You'll learn the technology-independent foundations of CS

#### Connections to other parts of science:

• Finite automata arise in compilers, AI, coding, chemistry

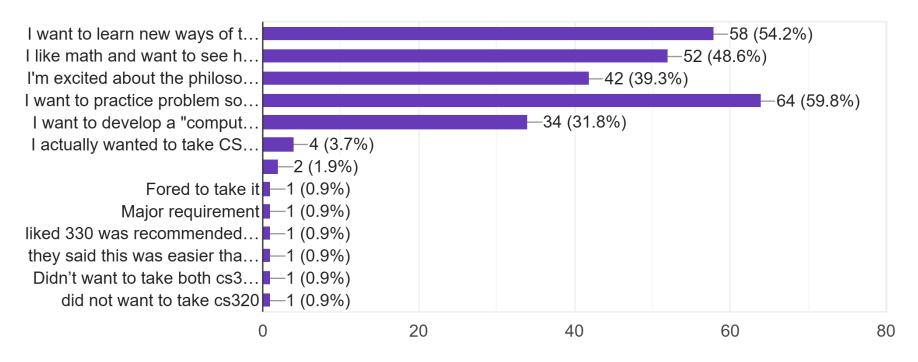
https://cstheory.stackexchange.com/a/14818

- Hard problems are essential to cryptography
- Computation occurs in cells/DNA, the brain, economic systems, physical systems, social networks, etc.

# What appeals to you about the theory of computation?

#### Why do you want to study the theory of computation?

107 responses



# Why study theory of computation?

#### Practical knowledge for developers





"Boss, I can't find an efficient algorithm. I guess I'm just too dumb."





"Boss, I can't find an efficient algorithm because no such algorithm exists."

#### Will you be asked about this material on job interviews? No promises, but a true story...

# More about strings and languages

# String Theory



- Symbol: Ex. a, b, 0, 1
- Alphabet: A finite set  $\Sigma$  of symbols Ex.  $\Sigma = \{a, b\}$
- String: A finite concatenation of alphabet symbols Ex. bba, ababb
  - $\varepsilon$  denotes empty string, length 0
  - $\Sigma^*$  = set of all strings using symbols from  $\Sigma$

Ex.  $\{a, b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, ...\}$ 

• Language: A set  $L \subseteq \Sigma^*$  of strings

# String Theory



- Length of a string, written |x|, is the number of symbols Ex.  $|abba| = |\varepsilon| =$
- Concatenation of strings x and y, written xy, is the symbols from x followed by the symbols from y



- **Reversal** of string *x*, written *x*<sup>*R*</sup>, consists of the symbols of *x* written backwards
- Ex.  $x = aab \implies x^R =$

# Fun with String Operations

What is  $(xy)^R$ ? Ex.  $x = aba, y = bba \Rightarrow xy =$  $\Rightarrow (xy)^R =$ 



- a)  $x^{R}y^{R}$ b)  $y^{R}x^{R}$ c)  $(yx)^{R}$
- d)  $xy^R$

Fun<sup>proofs</sup> with String Operations

Claim: 
$$(xy)^R =$$
  
Proof: Let  $x = x_1x_2 \dots x_n$  and  $y = y_1y_2 \dots y_m$   
Then  $(xy)^R =$ 

Not even the most formal way to do this:

- 1. Define string length recursively
- 2. Prove by induction on |y|

#### Languages

#### A language L is a set of strings over an alphabet $\Sigma$ i.e., $L \subseteq \Sigma^*$

Languages = computational (decision) problems <u>Input:</u> String  $x \in \Sigma^*$ <u>Output:</u> Is  $x \in L$ ? (Yes or No?)

#### Some Simple Languages

$$\Sigma = \{0, 1\} \qquad \Sigma = \{a, b, c\}$$

Ø (Empty set)

#### $\Sigma^*$ (All strings)

$$\Sigma^{n} = \{x \in \Sigma^{*} \mid |x| = n\}$$
(All strings of length n)

#### Some More Interesting Languages

 L<sub>1</sub> = The set of strings x ∈ {a, b}\* that have an equal number of a's and b's

•  $L_2$  = The set of strings  $x \in \{a, b\}^*$  that start with (0 or more) a's and are followed by an equal number of b's

•  $L_3$  = The set of strings  $x \in \{0, 1\}^*$  that contain the substring "0100"

#### Some More Interesting Languages

•  $L_4$  = The set of strings  $x \in \{a, b\}^*$  of length at most 4

•  $L_5$  = The set of strings  $x \in \{a, b\}^*$  that contain at least two a's

#### New Languages from Old

 $L_6$  = The set of strings  $x \in \{a, b\}^*$  that have an equal number of a's and b's and length greater than 4

Since languages are just sets of strings, can build them using set operations:

 $A \cup B$  "union"

 $A \cap B$  "intersection"

 $\bar{A}$  "complement"

#### New Languages from Old

 $L_6$  = The set of strings  $x \in \{a, b\}^*$  that have an equal number of a's and b's and have length greater than 4

- L<sub>1</sub> = The set of strings x ∈ {a, b}\* that have an equal number of a's and b's
- $L_4$  = The set of strings  $x \in \{a, b\}^*$  of length at most 4

$$\Rightarrow L_6 =$$

**Operations Specific to Languages** 

• Reverse:  $L^R = \{x^R | x \in L\}$ Ex.  $L = \{\varepsilon, a, ab, aab\} \Rightarrow L^R =$ 

• Concatenation:  $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$ Ex.  $L_1 = \{ab, aab\}$   $L_2 = \{\varepsilon, b, bb\}$  $\Rightarrow L_1 \circ L_2 =$ 



String, language, or something else?



Ø {*ɛ*}

Е

{Ø}

#### Languages

Languages = computational (decision) problems

```
Input: String x \in \Sigma^*
```

<u>Output:</u> Is  $x \in L$ ? (Yes or No? I.e., Accept or Reject?)

The language **recognized** by a program is the set of strings  $x \in \Sigma^*$  that it *accepts* 

#### What Language Does This Program Recognize?

Alphabet 
$$\Sigma = \{a, b\}$$

On input 
$$x = x_1 x_2 \dots x_n$$
:  
count = 0

For 
$$i = 1, ..., n$$
:

If 
$$x_i = a$$
:  
count = count + 1  
f count  $\leq 4$ : accept

a) 
$$\{x \in \Sigma^* \mid |x| > 4\}$$
  
b)  $\{x \in \Sigma^* \mid |x| \le 4\}$   
c)  $\{x \in \Sigma^* \mid |x| = 4\}$ 



d)  $\{x \in \Sigma^* \mid x \text{ has more than 4 a's} \}$ e)  $\{x \in \Sigma^* \mid x \text{ has at most 4 a's} \}$ 

f) 
$$\{x \in \Sigma^* \mid x \text{ has exactly 4 a's}\}$$