BU CS 332 – Theory of Computation

https://forms.gle/SspWTA9xLbagTzpH6

Lecture 3:

• Deterministic Finite Automata

• Non-deterministic FAs

Mark Bun

January 29, 2025

Reading: Sipser Ch 1.1-1.2

Last Time

- Parts of a theory of computation: Model for machines, model for problems, theorems relating machines and problems
- Strings: Finite concatenations of symbols
- Languages: Sets L of strings
- Computational (decision) problem: Given a string x , is it in the language L ?

Languages

Languages = computational (decision) problems

```
Input: String x \in \Sigma^*
```

```
Output: Is x \in L? (Yes or No? I.e., Accept or Reject?)
```
The language **recognized** by a program is the set of strings ∗ that it *accepts*

What Language Does This Program Recognize?

 C

 (e)

$$
Alphabet \Sigma = \{a, b\}
$$

On input
$$
x = x_1 x_2 ... x_n
$$
:
count = 0

For
$$
i = 1, ..., n
$$
:

$$
\text{If } x_i = a:
$$

count $=$ count $+1$ If count ≤ 4 : accept Else: reject

a)
$$
\{x \in \Sigma^* \mid |x| > 4\}
$$
 Figure 4\nb) $\{x \in \Sigma^* \mid |x| \leq 4\}$ **Example 6**\nc) $\{x \in \Sigma^* \mid |x| = 4\}$ \nd) $\{x \in \Sigma^* \mid x \text{ has more than } 4 \text{ a's}\}$

$$
\{x \in \Sigma^* \mid x \text{ has at most } 4 \text{ a's }\}
$$

f)
$$
{x \in \Sigma^* \mid x \text{ has exactly } 4 \text{ a's}}
$$

Deterministic Finite Automata

A (Real-Life?) Example

- Example: Kitchen scale
- P = Power button (ON / OFF)

- U = Units button (cycles through g / oz / lb) Only works when scale is ON, but units remembered when scale is OFF
- Starts OFF in g mode
- A computational problem: Does a sequence of button presses (describable as a string in $\{P,U\}^*$) leave the scale ON in oz mode?

Machine Models

• Finite Automata (FAs): Machine with a finite amount of unstructured memory

A DFA for the Kitchen Scale Problem

 P = Power button (ON / OFF) U = Units button (cycles through g / oz / lb) Starts OFF in g mode

Problem: Does a sequence of button presses leave the scale ON in oz mode?

A DFA Recognizing Parity

The language recognized by a DFA is the set of inputs on which it ends in an "accept" state

Parity: Given a string consisting of a 's and b 's, does it contain an even number of $a's$?

 $= \{a, b\}$ $L = \{w \mid w \text{ contains an even number of } a's\}$

Which state is reached by the parity DFA on input aabab?

b) "odd"

Anatomy of a DFA

Some Tips for Thinking about DFAs

Given a DFA, what language does it recognize?

- - Try experimenting with it on short strings. Do you notice any patterns?
- - What kinds of inputs cause the DFA to get trapped in a state?

Given a language, construct a DFA recognizing it

- - Imagine you are a machine, reading one symbol at a time, always prepared with an answer
- - What is the essential information that you need to remember? Determines set of states.

What language does this DFA recognize?

Practice!

- Lots of worked out examples in Sipser
- Automata Tutor: https://automata-tutor.livelab.fi.muni.cz/

Formal Definition of a DFA

A finite automaton is a 5-tuple $M~=~(Q, \Sigma, \delta, q_0)$

- is the set of states
- Σ is the alphabet

is the transition function

 $\pmb{0}$ $i \in O$ is the start state

 $F \subseteq Q$ is the set of accept states

A DFA for Parity

Parity: Given a string consisting of a 's and b 's, does it contain an even number of $a's$?

 $= \{a, b\}$ $L = \{w \mid w \text{ contains an even number of } a's\}$

State set $O=$ Alphabet $\Sigma =$ Transition function δ Start state q_0 δ \boldsymbol{a} \boldsymbol{b} q_0 q_1

Set of accept states $F =$

Formal Definition of DFA Computation A DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string 1 W_2 \cdots W_n * (where each $w_i \in \Sigma$) if there exist $r_0, \ldots, r_n \in Q$ such that

1. $r_0 = q_0$

2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, \ldots, n-1$, and

3. r_n

 $L(M)$ = the language of machine M $=$ set of all strings machine M accepts M recognizes the language $L(M)$

Example: Computing with the Parity DFA

Let Does M accept w ?

> What is $\delta(r_{2}, w_{3})$? a) q_0 b) q_1

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string 1^{w_2} w_n * (where each w_i \in Σ) if there exist $r_0, \ldots, r_n \in Q$ such that

- $1. \quad r_0 \ = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, \ldots, n - 1$
- 3. $r_n \in F$

Regular Languages

Definition: A language is regular if it is recognized by a DFA

 $=\{w \in \{0,1\}^*| w \text{ contains } 001 \}$ is regular = { $w \in \{a, b\}^*$ | w has an even number of a 's } is regular

Many interesting problems are captured by regular languages

> Network Protocols**Compilers** Genetic Testing Arithmetic

Internet Transmission Control Protocol

Let $TCPS = \{ w \mid w \text{ is a complete TCP Session} \}$ Theorem: TCPS is regular

Compilers

Comments :

- Are delimited by $/*$ */
- Cannot have nested /* */
- Must be closed by */
- */ is illegal outside a comment

COMMENTS = {strings over {0,1, ℓ , $*$ } with legal comments}

Theorem: COMMENTS is regular

Genetic Testing

DNA sequences are strings over the alphabet $\{A, C, G, T\}$.

A gene g is a special substring over this alphabet.

A genetic test searches a DNA sequence for a gene.

GENETICTEST_a = {strings over {A, C, G, T} containing g as a substring}

Theorem: GENETICTEST $_g$ is regular for every gene $g.$

Arithmetic

LET Σ = $\left\{\begin{array}{c} \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right],$ $\left[\begin{smallmatrix} 1\0\0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 1\0\1 \end{smallmatrix}\right], \left[\begin{smallmatrix} 1\1\0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 1\1\1 \end{smallmatrix}\right]\right\}$ 0 00 0 10 1 00 1 10 01 0 11 1 01 1 1

- A string over Σ has three ROWS (ROW₁, ROW₂, ROW₃)
- Each ROW $b_0 b_1 b_2 ... b_N$ represents the integer

$$
b_0 + 2b_1 + \ldots + 2^N b_N.
$$

• Let ADD = ${S \in \Sigma^* | ROW_1 + ROW_2 = ROW_3 }$

Theorem. ADD is regular.

Nondeterministic Finite Automata

Nondeterminism

In a DFA, the machine is always in exactly one state upon reading each input symbol

In a nondeterministic FA, the machine can "try out" many different ways of reading the same string

- - Next symbol may cause an NFA to "branch" into multiple possible computations
- - Next symbol may cause NFA's computation to fail to enter any state at all

Nondeterminism

A Nondeterministic Finite Automaton (NFA) accepts if there *exists* a way to make it reach an accept state.

Nondeterminism

Example: Does this NFA accept the string 1100?

Nondeterminism

Example: Does this NFA accept the string 11?

Example

 $L(N) =$

a) $\{w \mid w \text{ ends with } 101\}$ b) $\{w \mid w \text{ ends with } 11 \text{ or } 101\}$ c) $\{w \mid w \text{ contains } 101\}$ d) $\{w \mid w \text{ contains } 11 \text{ or } 101\}$

