BU CS 332 – Theory of Computation

https://forms.gle/xcJwrTwrLQuitQrj9

Lecture 6:

- Regexes = NFAs
- Limitations of Finite Automata

Reading: Sipser Ch 1.3 "Myhill-Nerode" note

Mark Bun February 10, 2025

Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

- 1. ε , \emptyset , and a are regular expressions for every $a \in \Sigma$
- 2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2), (R_1 \circ R_2), \text{ and } (R_1^*)$

Examples: (over $\Sigma = \{a, b, c\}$) (with simplified notation) ab $ab^*c \cup (a^*b)^*$ Ø

Regular Expressions – Semantics

L(R) = the language a regular expression describes

1.
$$L(\emptyset) = \emptyset$$

2. $L(\varepsilon) = \{\varepsilon\}$
3. $L(a) = \{a\}$ for every $a \in \Sigma$
4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
6. $L((R_1^*)) = (L(R_1))^*$

Example: $L(a^*b^*) = \{a^m b^n \mid m, n \ge 0\}$

Syntactic Sugar

- For alphabet Σ , the regex Σ represents $L(\Sigma) = \Sigma = \{a, b, c\}$ e.g. if $\Sigma = \{a, b, c\}$ then regular expression Σ study for $(a \cup b \cup c)$
- For regex R, the regex $R^+ = RR^*$

Rt is interpreted as "one or more occurrence of a String generated by R"

Regexes in the Real World

grep = globally search for a regular expression and print matching lines

\$ grep	'^xy*z' myfile
xyz	
xyzde	
XZZ	
xz	
xyyz	
xyyyz	
xyyyyz	
\$ grep	'^x.*z' myfile
xyz	
xyzde	
xxz	
xzz	
x\z	
X*Z	
xz	
x z	
xYz	
xyyz	
xyyyz	
хууууг	
	'^x*z' myfile
X*Z	
	'\\' myfile
x\z	
\$	

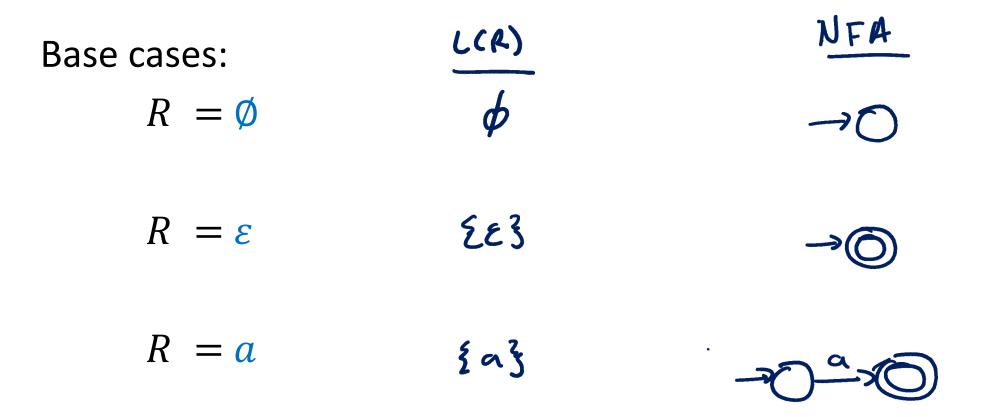
Regular Expressions Describe Regular Languages

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex



Regular expression $\rightarrow NFA$

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex - # of symbols, :e. WTS shokement is the for regeres of size with $\phi, e, a, (,), o, v, K$

What should the inductive hypothesis be?

- a) Suppose some regular expression of length k can be converted to an NFA
- b) Suppose **every** regular expression of length k can be converted to an NFA
- Suppose every regular expression of length at most k can be converted to an NFA
- d) None of the above

Sze = legth

Regular expression \rightarrow NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex IH: Assure every regere of size ELL has an equil. NFA with if R is a regere of size Lith the R has an equil. NFA Inductive step:

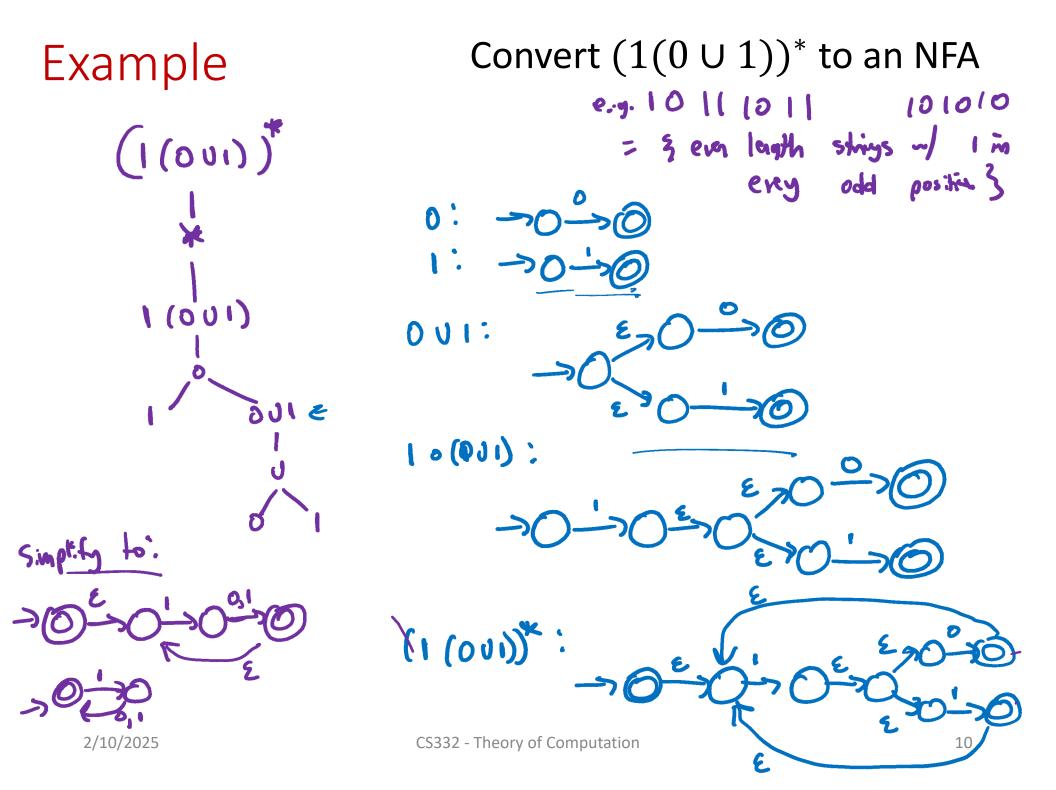
$$R = (R_1 \cup R_2)$$

$$R = (R_1 R_2)$$

$$R = (R_1 R_2)$$

$$R = (R_1^*)$$

$$R = (R$$



Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

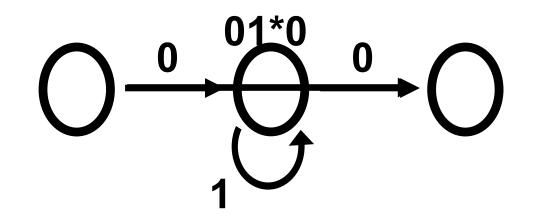
Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

$NFA \rightarrow Regular expression$

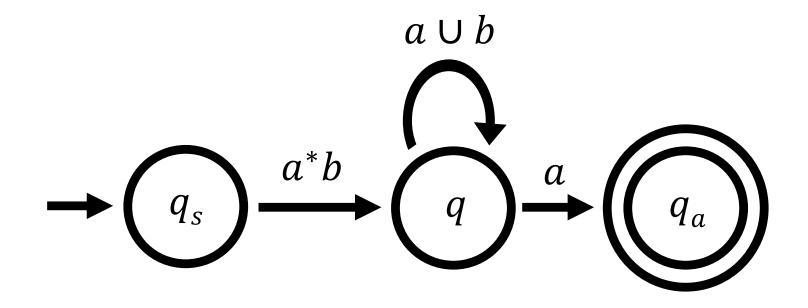
Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by "ripping out" states one at a time and replacing with regexes

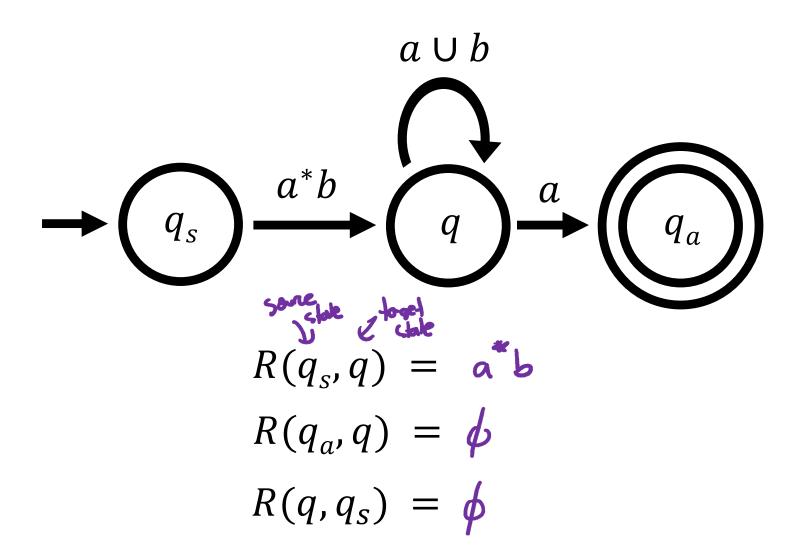


Generalized NFAs

- Every transition is labeled by a regex
- One start state with only outgoing transitions
- Only one accept state with only incoming transitions
- Start state and accept state are distinct

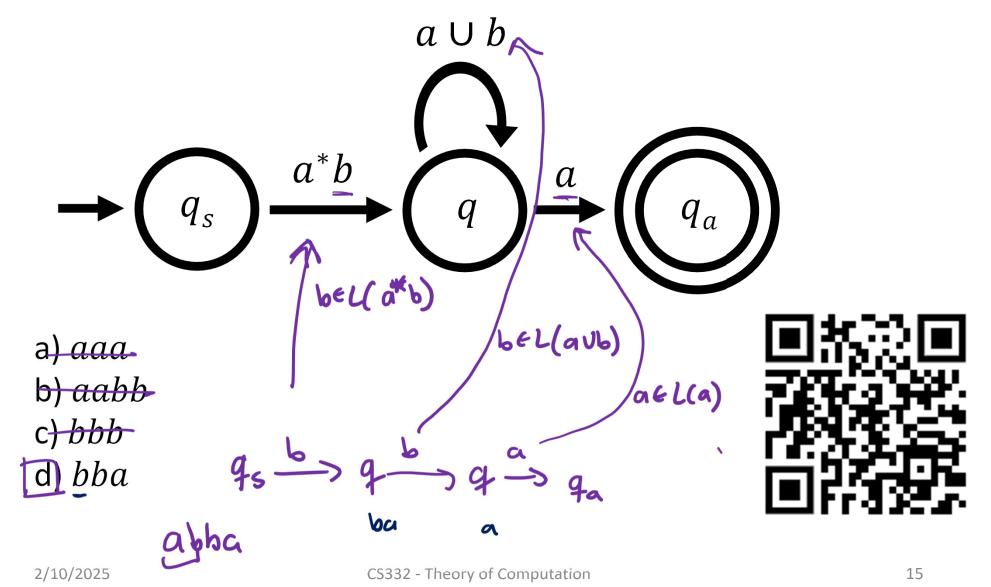


Generalized NFA Example

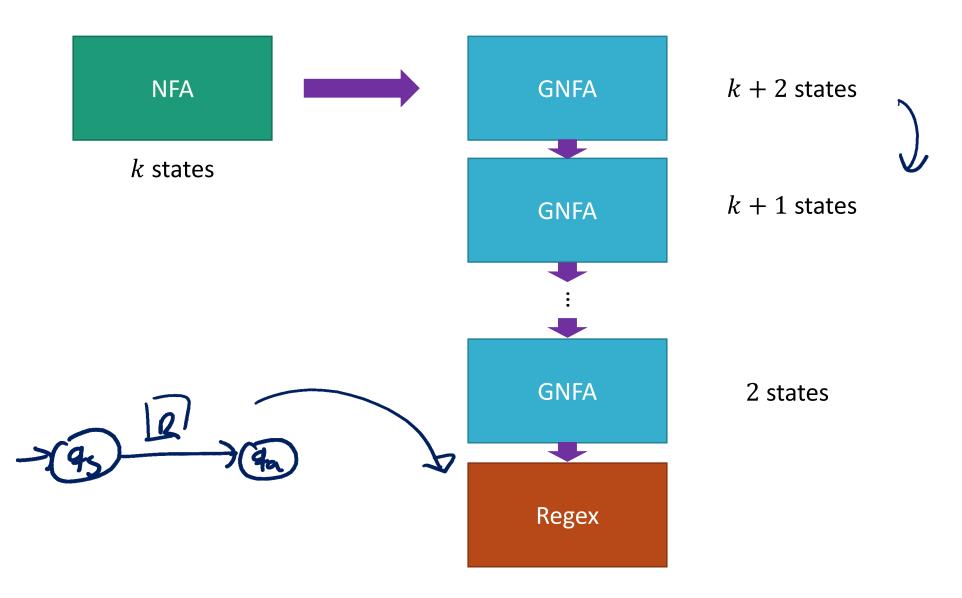


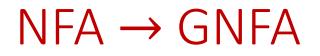
Which of these strings is accepted?

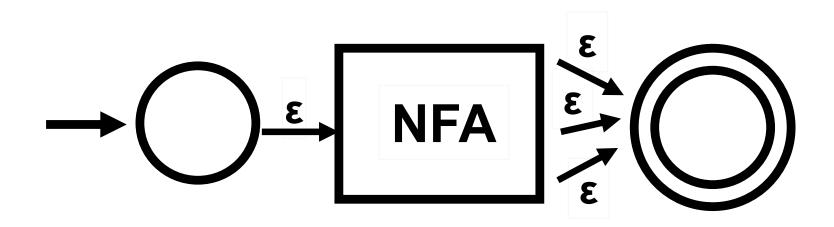
Which of the following strings is accepted by this GNFA?



$NFA \rightarrow Regular expression$







- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.

$GNFA \rightarrow Regular expression$

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

$$(q_1) \xrightarrow{a^*b} (q_2) \xrightarrow{a} (q_3)$$

$$(q_1)$$
 a^*ba (q_3)

$GNFA \rightarrow Regular expression$

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the $a \cup b$

a^{*}b(a ∪ b)a
a^{*}b(a ∪ b)^{*}a
a^{*}b ∪ (a ∪ b) ∪ a
None of the above

 a^*b

a b (aub) a

$GNFA \rightarrow Regular expression$

ab (aub) a U

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the $a \cup b$

 a^*b

 q_2

h

 q_1

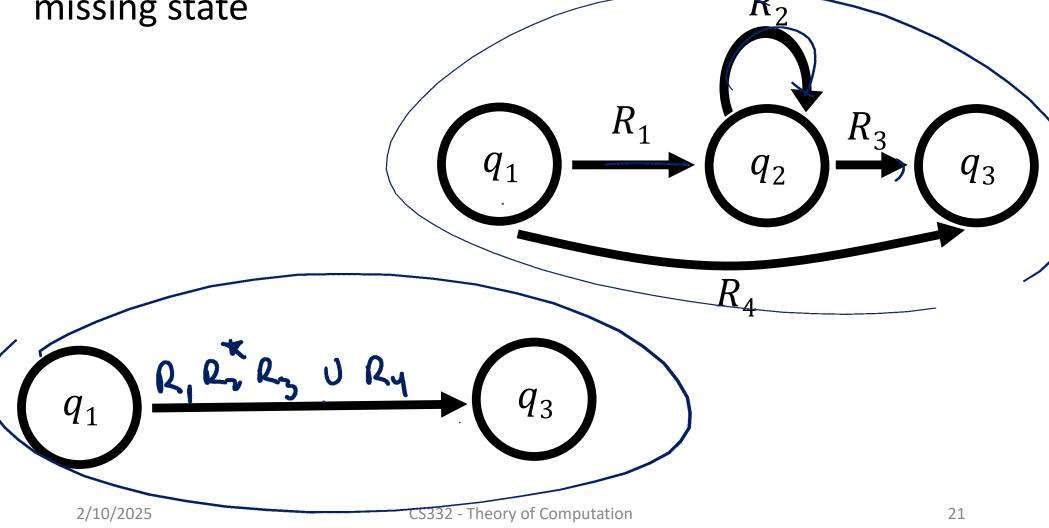
 q_3

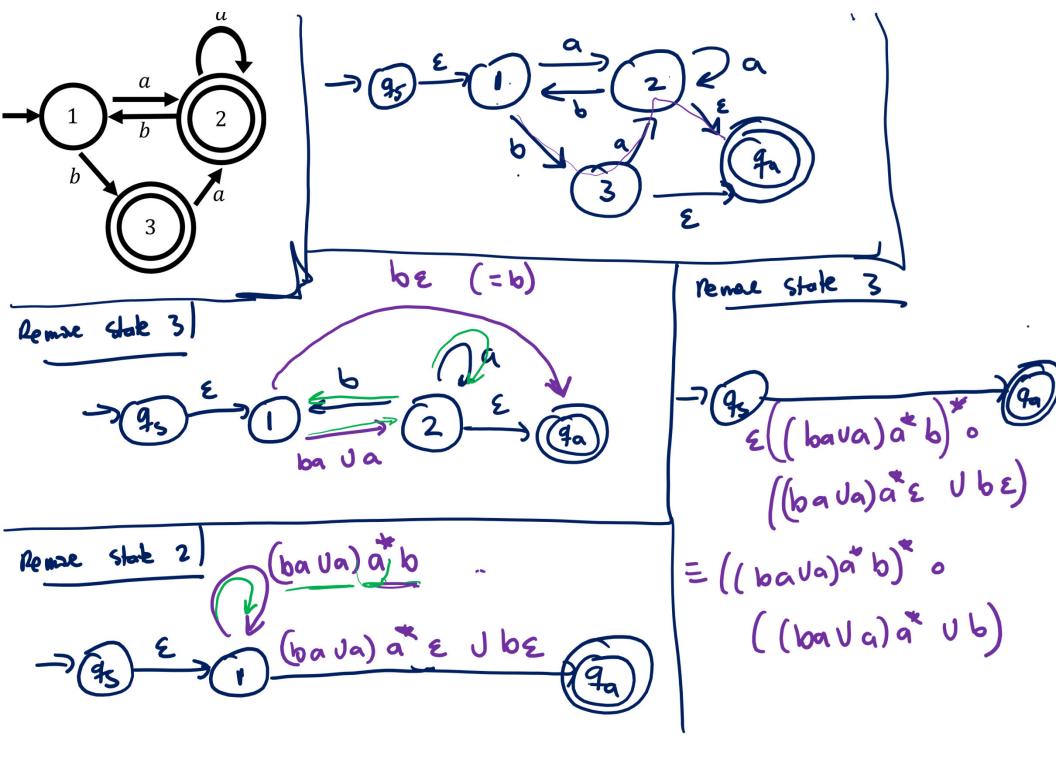
b

 q_3

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state R_2





Limitations of Finite Automata

Motivating Questions

We've seen techniques for showing that languages are regular
 (anshuct a next)

- (asstruct au NFA - Use clouve properties

- How can we tell if we've found the smallest DFA recognizing a language?
- Are all languages regular? How can we prove that a language is not regular?