BU CS 332 – Theory of Computation

https://forms.gle/XDLCbA5mrSRjNvZX6

Lecture 8:

- More on non-regularity
- Turing Machines

Mark Bun February 18, 2025

Reading:

"Myhill-Nerode" note

Sipser Ch 3.1, 3.3

Midtern Monday 2/24
Permanent office Hour rooms

HWY due tonight

Last Time: Distinguishing Set Method

Definition: Strings x and y are distinguishable by L if there exists a "distinguishing extension" $z \in \Sigma^*$ such that exactly one of xz or yz is in L.

Definition: A set of strings S is pairwise distinguishable by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states.

Corollary: If language L has an infinite pairwise distinguishable set, then L is not regular.

Reusing a Proof

Reduce Revision 1975

Finding a distinguishing set can take some work... Let's try to reuse that work!

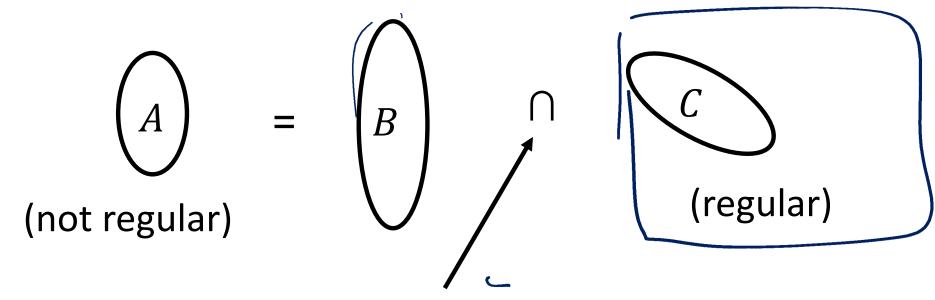
How might we show that

 $BALANCED = \{w \mid w \text{ has an equal } \# \text{ of } 0s \text{ and } 1s\}$ is not regular?

```
|w| = |w|
```

Using Closure Properties

If A is not regular, we can show a related language B is not regular



any of $\{\circ, \cup, \cap\}$ or, for one language, $\{\neg, R, *\}$

By contradiction: If B is regular, then $B \cap C (= A)$ is regular. But A is not regular so neither is B!

Prove $B = \{0^i 1^j | i \neq j\}$ is not regular using

$$A = \{0^n 1^n | n \ge 0\}$$
 and

Regular language

$$C = \{w \mid \text{all } 0s \text{ in } w \text{ appear before all } 1s\}$$

Which of the following expresses A in terms of Band C?

a)
$$A = B \cap C$$

c)
$$A = B \cup C$$

(b))
$$A = \overline{B} \cap C = C \setminus S$$
 d) $A = \overline{B} \cup C$

d)
$$A = \overline{B} \cup C$$

Proof that B is nonregular

Assume for the sake of contradiction that B is regular

We know:
$$\underline{A} = \overline{B} \cap \underline{C}$$

Non-regular (closure under complement)

The \overline{B} is regular (closure under inter-section)

 $\overline{B} \cap C$ is regular ($A = \overline{B} \cap C$)

 $\overline{B} \cap C$ is regular ($A = \overline{B} \cap C$)

 $\overline{B} \cap C$
 \overline{B}

!DANGER!

Let $B = \{0^i 1^j | i \neq j\}$ and write $B = A \cup C$ where

Nonregular language

$$A = \{0^i 1^j | i > j \ge 0\}$$
 and

Nonregular language

$$C = \{0^i 1^j | j > i \ge 0\}$$
 and

Does this let us conclude B is nonregular?

No Non-regular languages are not closed under unan, is. the unan of two non-regulars. In: with be regular e.g. $L_1 = \frac{1}{2} 0^{\frac{1}{3}} \left[\frac{1}{3} + \frac{1}{3}, \frac{1}{3} + \frac{1}{$

Non-regular languagece are closed under complement.

Let A be non-regular.

Assure FTSOC that A noe

A = (A) => A is regular (since regular

Turing Machines

Turing Machines – Motivation

We've seen finite automata as a restricted model of computation

Finite Automata / Regular Expressions

- Can do simple pattern matching (e.g., substrings), check parity, addition
- Can't perform unbounded counting
- Can't recognize palindromes

Somewhat more powerful (not in this course):

Pushdown Automata / Context-Free Grammars

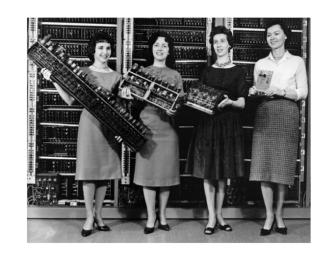
- Can count and compare, parse math expressions
- Can't recognize $\{a^nb^nc^n \mid n \ge 0\}$



Turing Machines – Motivation

Goal:

Define a model of computation that is



- 1) General purpose. Captures <u>all</u> algorithms that can be implemented in any programming language.
- 2) Mathematically simple. We can hope to prove that things are not computable in this model.

A Brief History

1900 – Hilbert's Tenth Problem

Atophentie equation:

Ghen a miltuntak polynomial $p(x_1,...,x_n)$ e.g. $p(x_1,x_2) = x_1^2x_2 + 3x_2 + x_1^3$ whitegor coefficients

Detroie whether $\exists x_1, x_2, ..., x_n \in \mathbb{Z}$ s.t. $\rho(x_1, ..., x_n) : 0$

Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

David Hilbert 1862-1943

1928 – The Entscheidungsproblem

The "Decision Problem"

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it's logically valid?

Gien on undemotizal statemy, is that statement the or false?

Wilhelm Ackermann 1896-1962

David Hilbert 1862-1943

1936 – Solution to the Entscheidungsproblem

Alonzo Church 1903-1995

"An unsolvable problem of elementary number theory"

Model of computation: λ -calculus (CS 320)

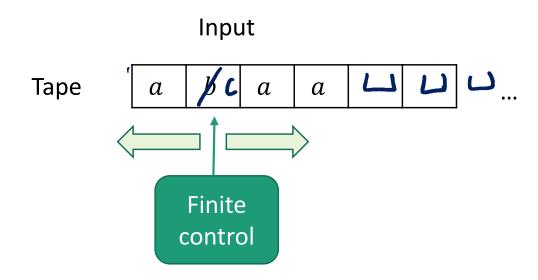
Alan Turing 1912-1954

"On computable numbers, with an application to the *Entscheidungsproblem*"

Model of computation: Turing Machine

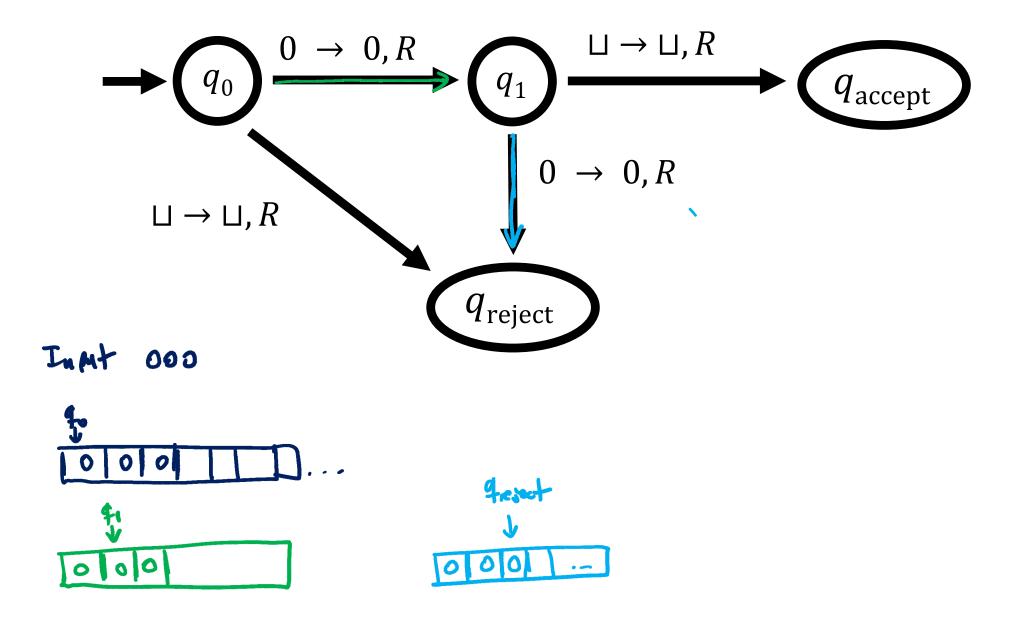
The Turing Machine Model

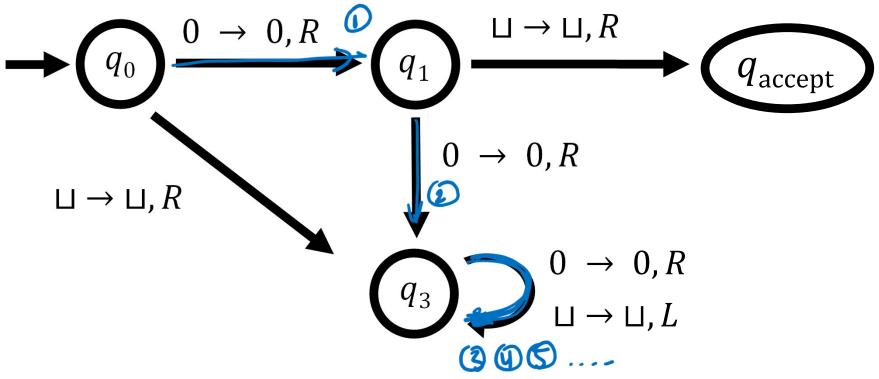
The Basic Turing Machine (TM)



- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

 $q_{\rm accept}$ $\sqcup \to \sqcup$, R q_{reject}





What does this TM do on input 000?

- a) Halt and accept
- b) Halt and reject
- c) Halt in state q_3
- d) Loop forever without halting

Three Levels of Abstraction

High-Level Description

An algorithm (like CS 330)

Analogy

Puller, Java

Implementation-Level Description

Describe (in English) the instructions for a TM

C, Asembly

- How to move the head
- What to write on the tape

Low-Level Description

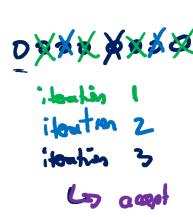
State diagram or formal specification

Byte (de, Machine vade

Determine if a string $w \in \{0\}^*$ is in the language

$$A = \{0^{2^n} \mid n \ge 0\}$$

High-Level Description



Repeat the following forever:

- If there is exactly one 0 in w, accept
- If there is an odd (> 1) number of 0s in w, reject
- Delete half of the 0s in w

Determine if a string $w \in \{0\}^*$ is in the language

$$A = \{0^{2^n} \mid n \ge 0\}$$

Implementation-Level Description

- 1. While moving the tape head left-to-right:
 - a) Cross off every other 0 to \checkmark
 - b) If there is exactly one 0 when we reach the first blank symbol, accept
 - c) If there is an odd (> 1) number of 0s when we reach first blank symbol, reject
- 2. Return the head to the left end of the tape
- Go back to step 1

Determine if a string $w \in A = \{0^{2^n}\}$

Example Low-Level Description 0000

