BU CS 332 – Theory of Computation

https://forms.gle/XDLCbA5mrSRjNvZX6

- More on non-regularity
- Turing Machines

Reading: "Myhill-Nerode" note Sipser Ch 3.1, 3.3

Mark Bun

February 18, 2025

Last Time: Distinguishing Set Method

Definition: Strings x and y are **distinguishable** by L if there exists a "distinguishing extension" $z \in \Sigma^*$ such that exactly one of xz or yz is in L.

Definition: A set of strings S is **pairwise distinguishable** by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states.

Corollary: If language L has an infinite pairwise distinguishable set, then L is not regular.

Reusing a Proof

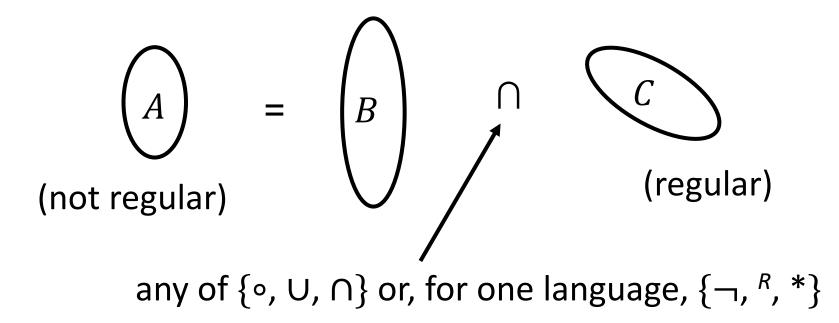
Finding a distinguishing set can take some work... Let's try to reuse that work!

How might we show that $BALANCED = \{w \mid w \text{ has an equal } \# \text{ of } 0 \text{ s and } 1 \text{ s} \}$ is not regular?

 $\{0^n1^n | n \ge 0\} = BALANCED \cap \{w | all 0s in w appear before all 1s\}$

Using Closure Properties

If A is not regular, we can show a related language B is not regular



<u>By contradiction</u>: If *B* is regular, then $B \cap C (= A)$ is regular. But *A* is not regular so neither is *B*!

Example

Prove $B = \{0^i 1^j | i \neq j\}$ is not regular using

- Nonregular language $A = \{0^n 1^n | n \ge 0\} \text{ and }$
- Regular language

 $C = \{w \mid all \ 0s \ in \ w \ appear \ before \ all \ 1s\}$

Which of the following expresses A in terms of B and C?

a)
$$A = B \cap C$$
c) $A = B \cup C$ b) $A = \overline{B} \cap C$ d) $A = \overline{B} \cup C$

Proof that *B* is nonregular

Assume for the sake of contradiction that *B* is regular We know: $A = \overline{B} \cap C$

!DANGER!

Let $B = \{0^i 1^j | i \neq j\}$ and write $B = A \cup C$ where

- Nonregular language $A = \left\{ 0^{i} 1^{j} | i > j \ge 0 \right\} \text{ and}$
- Nonregular language

 $C = \{0^{i}1^{j} | j > i \ge 0\}$ and

Does this let us conclude *B* is nonregular?

Turing Machines

Turing Machines – Motivation

We've seen finite automata as a restricted model of computation

Finite Automata / Regular Expressions

- Can do simple pattern matching (e.g., substrings), check parity, addition
- Can't perform unbounded counting
- Can't recognize palindromes

Somewhat more powerful (not in this course):

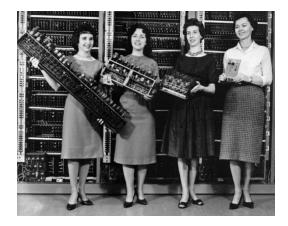
Pushdown Automata / Context-Free Grammars

- Can count and compare, parse math expressions
- Can't recognize $\{a^n b^n c^n \mid n \ge 0\}$

Turing Machines – Motivation

<u>Goal:</u>

Define a model of computation that is



- 1) General purpose. Captures <u>all</u> algorithms that can be implemented in any programming language.
- 2) Mathematically simple. We can hope to prove that things are <u>not</u> computable in this model.

A Brief History

1900 – Hilbert's Tenth Problem

Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

David Hilbert 1862-1943

1928 – The Entscheidungsproblem

The "Decision Problem"

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it's logically valid?

Wilhelm Ackermann 1896-1962

David Hilbert 1862-1943

1936 – Solution to the Entscheidungsproblem

"An unsolvable problem of elementary number theory"

Model of computation: λ -calculus (CS 320)

Alonzo Church 1903-1995

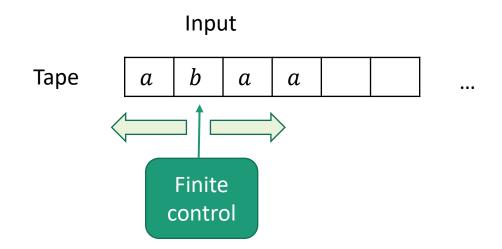
Alan Turing 1912-1954

"On computable numbers, with an application to the *Entscheidungsproblem*"

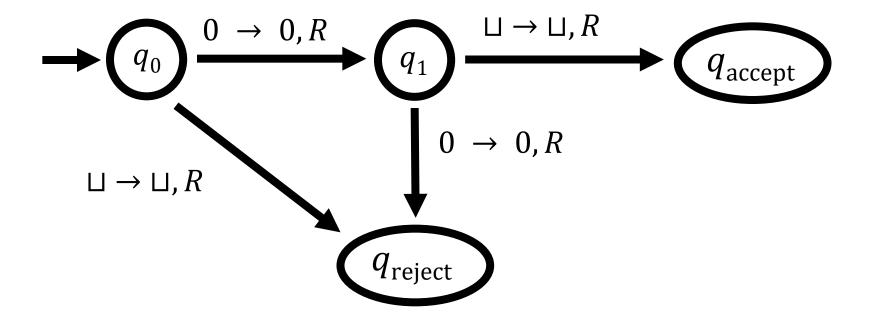
Model of computation: Turing Machine

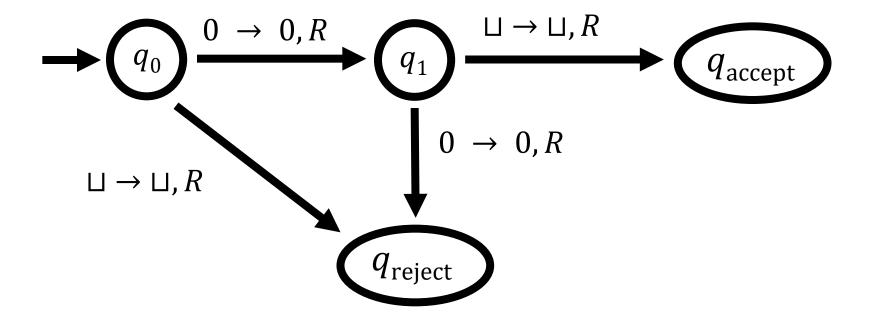
The Turing Machine Model

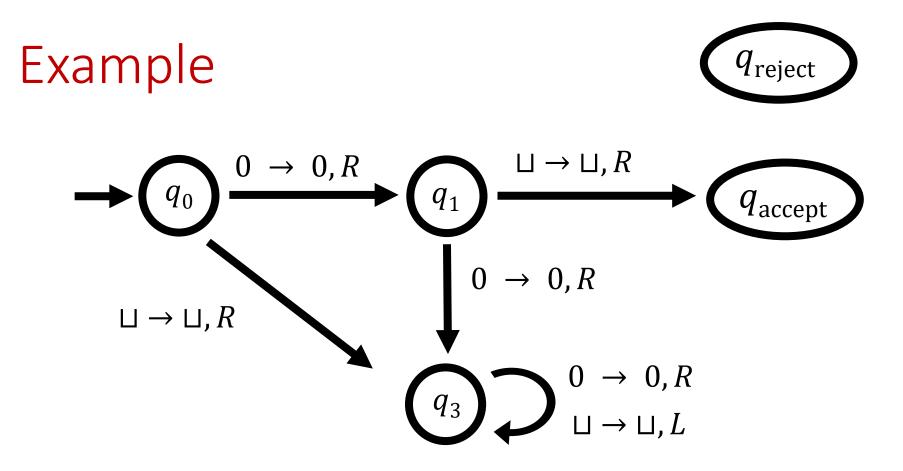
The Basic Turing Machine (TM)



- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state







What does this TM do on input 000?

- a) Halt and accept
- b) Halt and reject
- c) Halt in state q_3
- d) Loop forever without halting

Three Levels of Abstraction

High-Level Description An algorithm (like CS 330)

Implementation-Level Description

Describe (in English) the instructions for a TM

- How to move the head
- What to write on the tape

Low-Level Description

State diagram or formal specification

Example

Determine if a string $w \in \{0\}^*$ is in the language $A = \{0^{2^n} \mid n \ge 0\}$

High-Level Description

Repeat the following forever:

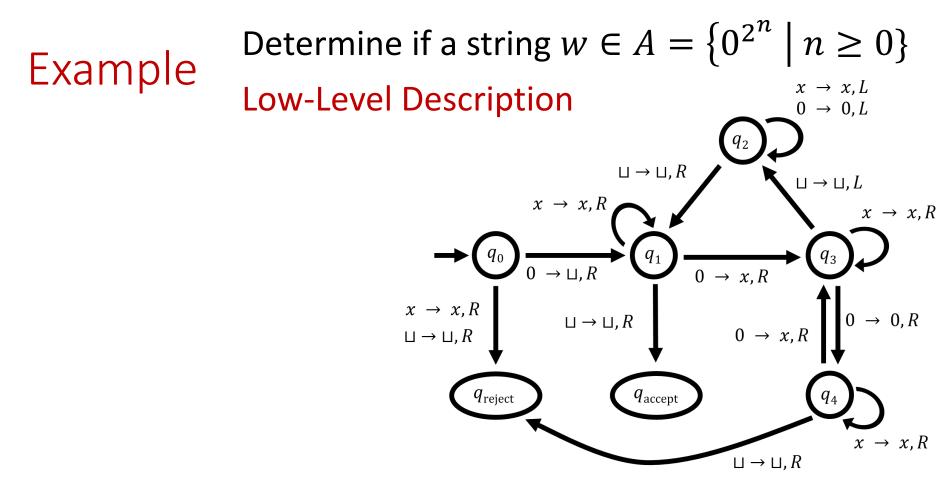
- If there is exactly one 0 in w, accept
- If there is an odd (> 1) number of 0s in w, reject
- Delete half of the 0s in w

Example

Determine if a string $w \in \{0\}^*$ is in the language $A = \{0^{2^n} \mid n \ge 0\}$

Implementation-Level Description

- 1. While moving the tape head left-to-right:
 - a) Cross off every other 0
 - b) If there is exactly one 0 when we reach the first blank symbol, accept
 - c) If there is an odd (> 1) number of 0s when we reach first blank symbol, reject
- 2. Return the head to the left end of the tape
- 3. Go back to step 1



Differences between TMs and Finite Automata

Formal Definition of a TM

A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- *Q* is a finite set of states
- Σ is the input alphabet (does **not** include \sqcup)
- Γ is the tape alphabet (contains \sqcup and Σ)
- δ is the transition function

...more on this later

- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state ($q_{\text{reject}} \neq q_{\text{accept}}$)

TM Transition Function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$

L means "move left" and *R* means "move right" $\delta(p, a) = (q, b, R)$ means:

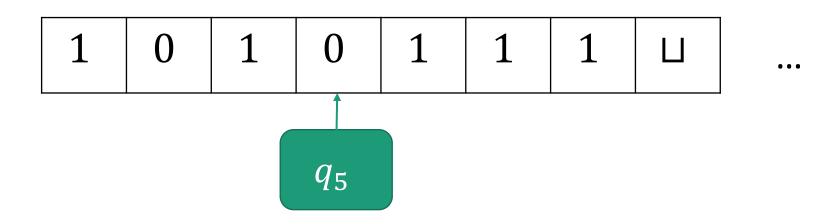
- Replace *a* with *b* in current cell
- Transition from state *p* to state *q*
- Move tape head right

 $\delta(p, a) = (q, b, L)$ means:

- Replace *a* with *b* in current cell
- Transition from state *p* to state *q*
- Move tape head left UNLESS we are at left end of tape, in which case don't move

Configuration of a TM

A string that captures the **state** of a TM together with the **contents of the tape**



Configuration of a TM: Formally

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by infinitely many blanks \sqcup)
- Current state = q
- Tape head on first symbol of v

Example: $101q_50111$

