BU CS 332 – Theory of Computation

https://forms.gle/wk3dp8JPCnJ1cYRN7

Lecture 10:

- Turing Machines
- TM Variants and Closure Properties

Mark Bun February 26, 2025

Reading: Sipser Ch 3.1-3.3

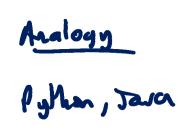
The Basic Turing Machine (TM)



- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

Three Levels of Abstraction

High-Level Description An algorithm (like CS 330)



C, Assembly

Implementation-Level Description

Describe (in English) the instructions for a TM

- How to move the head
- What to write on the tape

Low-Level Description

State diagram or formal specification

Byte code, Machine code

Example

Determine if a string $w \in \{0\}^*$ is in the languageX is an
allowing $A = \{0^{2^n} \mid n \ge 0\}$ Input: $0^{2^n} \mid n \ge 0\}$ Input: $0^{2^n} \mid n \ge 0\}$ High-Level Description

Repeat the following forever:

- If there is exactly one 0 in w, accept
- If there is an odd (> 1) number of 0s in w, reject
- Delete half of the 0s in w

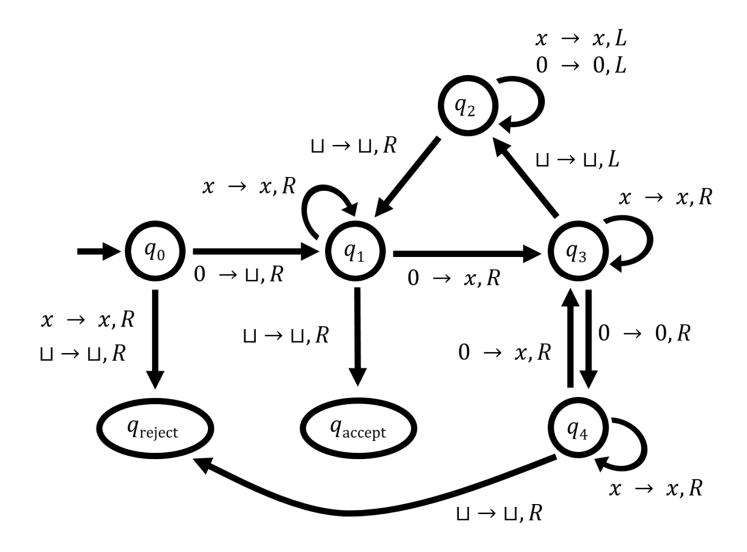
Example

Determine if a string $w \in \{0\}^*$ is in the language $A = \{0^{2^n} \mid n \ge 0\}$

Implementation-Level Description

- 1. While moving the tape head left-to-right:
 - a) Cross off every other 0 te. chase ω X
 - b) If there is exactly one 0 when we reach the first blank symbol, accept
 - c) If there is an odd (> 1) number of 0s when we reach first blank symbol, reject
- 2. Return the head to the left end of the tape
- 3. Go back to step 1

ExampleDetermine if a string $w \in A = \{0^{2^n} \mid n \ge 0\}$ Low-Level Description



Differences between TMs and Finite Automata

2/26/2025

CS332 - Theory of Computation

Formal Definition of a TM

A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- *Q* is a finite set of states
- Σ is the input alphabet (does **not** include \Box) e.g. $\Sigma = 303$ Γ is the tape alphabet (contains \Box and Σ) e.g. $\Gamma = 2013$, $\Box_1 \times 303$
- δ is the transition function

...more on this later

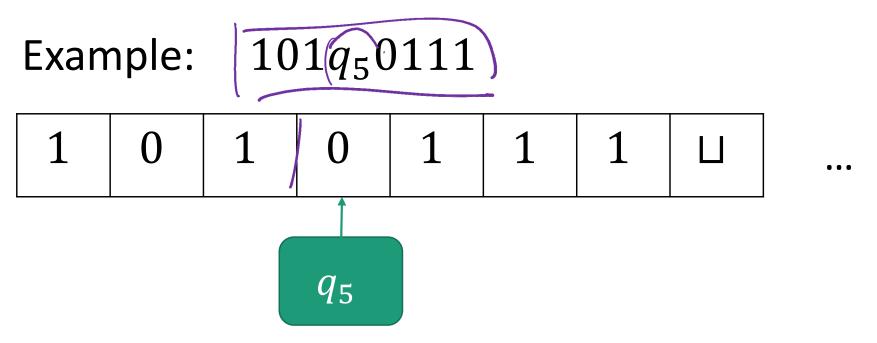
- $q_0 \in Q$ is the start state
- $q_{accept} \in Q$ is the accept state $q_{reject} \in Q$ is the reject state $(q_{reject} \neq q_{accept})$

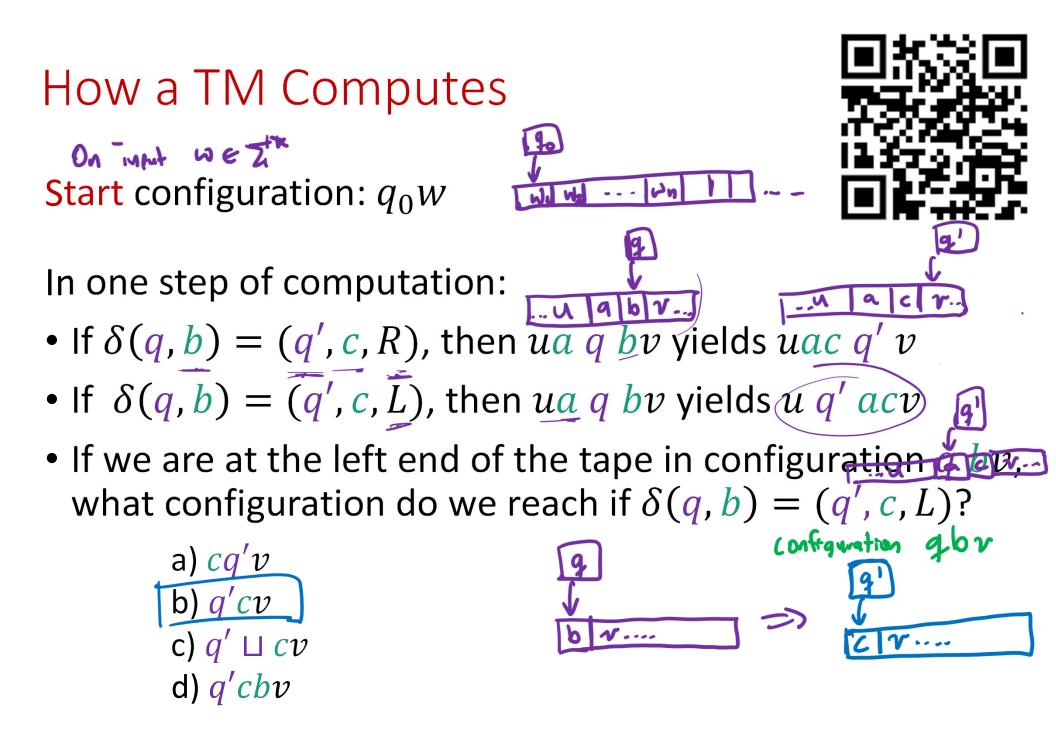
rew symbol to unite TM Transition Function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ (urr. shale (urr. symbol) yout claim (L= lest, R=right) L means "move left" and R means "move right" $(p,a) = (q,b,\overline{R})$ means: a-76, K • Replace *a* with *b* in current cell • Transition from state p to state q Move tape head right a->6. $\delta(p, a) = (q, b, L)$ means: • Replace *a* with *b* in current cell • Transition from state p to state q Move tape head left UNLESS we are at left end of tape, in which case don't move 2/26/2025 CS332 - Theory of Computation

Configuration of a TM: Formally

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by infinitely many blanks \sqcup)
- Current state = q
- Tape head on first symbol of v





How a TM Computes

Start configuration: $q_0 w$

In one step of computation:

- If $\delta(q, b) = (q', c, R)$, then $ua \ q \ bv$ yields $uac \ q' \ v$
- If $\delta(q, b) = (q', c, L)$, then $ua \ q \ bv$ yields $u \ q' \ acv$
- If $\delta(q, b) = (q', c, L)$, then q bv yields q' cv

Accepting configuration: $q = q_{accept}$ Rejecting configuration: $q = q_{reject}$

How a TM Computes

M accepts input *w* if there exists a sequence of configurations C_1, \ldots, C_k such that:

- $C_1 = q_0 W$ stort configuration
- C_i yields C_{i+1} for every i The transition from C_i to C_{i+1} in the set of constants
- C_k is an accepting configuration

$$A(M) =$$
 the set of all strings w which M accepts
I is Turing-recognizable if $A = L(M)$ for some TM M

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w

Recognizers vs. Deciders

L(M) = the set of all strings w which M accepts

A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w
- A is (Turing-)decidable if A = L(M) for some TM M which halts on every input
- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject}

Recognizers vs. Deciders IF A is declable, then A = L(m) for some IM A that almaps helts A = L(m) for some IM M Which of the following is true about the relationship between decidable and recognizable languages? § Decidable languages? § Decidable languages? § Decidable languages? § Decidable languages?

- a) The decidable languages are a subset of the recognizable languages
- b) The recognizable languages are a subset of the decidable languages
- c) They are incomparable: There might be decidable languages which are not recognizable and vice versa

Example: Arithmetic on a TM

The following TM decides MULT = $\{a^i b^j c^k \mid i \times j = k\}$: On input string *w*:

- 1. Check w is formatted correctly i.e. check $\omega = a^{2}b^{3}c^{2}$
- 2. For each *a* appearing in *w*:
- 3. For each *b* appearing in *w*:
- 4. Attempt to cross off a *c*. If none exist, reject.
- 5. If all *c*'s are crossed off, accept. Else, reject.

Example: Arithmetic on a TM

Xaa XX XXXX Implementation - Level Description The following TM decides $MULT = \{a^i b^j c^k\}$ $\times i =$ aaa bb ččč č On input string w: XXX XX XXX

- 1. Scan the input from left to right to determine whether it is a member of $L(a^*b^*c^*)$
- Return head to left end of tape
 Gross off an a if one exists. Scan right until a b occurs. 3. Shuttle between b's and c's crossing off one of each until all b's are gone. Reject if all c's are gone but some Crossed off b's remain.
- 4. Restore crossed off b's. If any a's remain, repeat step 3.
- 5. If all c's are crossed off, accept. Else, reject.

an bb c c c c c c an bb č č c c c c

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?

$$L = \left\{ \begin{array}{c|c} \rho(x_{1,1}, x_{n}) & | & p & s & an & integer polytomed, \\ \hline J & B_{1,1}, h & GZL & s.d. & \rho(Z_{1,1}, z_{n}) = 0 \end{array} \right\}$$

• L is Turing-recognizable
Special case use us 2, te. $\rho(X_{3}, y)$ e.g. $\rho(x_{1}, y) = x^{2}y - 2xy + x^{3}$
Jea': The evolution ρ on all possible pairs $(X_{3}, y) \in ZZ^{2}$
 $\begin{array}{c} T & 0 & -1 & t1 & -2 & t2 & \cdots \\ 0 & (1) & (2) & (1) & (2) & (1) & \cdots \\ -1 & (2) & (5) & 1 & -1 & \cdots \\ +1 & (6) & 1 & 1 & -2 & t2 & \cdots \\ -2 & 1 & 1 & -2 & t2 & \cdots \\ +2 & 1 & 1 & -2 & t2 & \cdots \\ +2 & 1 & 1 & -2 & t2 & \cdots \\ T & \rho(x_{1}, y) \quad hors a solution, Th acaph
Evel, Th hores a solution, Th acaph$

• *L* is not decidable (1949-70)

2/26/2025

CS332 - Theory of Computation

18

TM Variants

How Robust is the TM Model?

Does changing the model result in different languages being recognizable / decidable?

So far we've seen...

- Adding nondeterminism does not change the languages recognized by finite automata
- We can require that NFAs have a single accept state

Other modifications possible too: E.g., allowing DFAs to have multiple passes over their input does not increase their power

Turing machines have an astonishing level of robustness

TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue
- Primitive recursive functions
- Cellular automata

Equivalent TM models

 TMs that are allowed to "stay put" instead of moving left or right

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$

TMs with stay put are *at least* as powerful as basic TMs (Every basic TM is a TM with stay put that never stays put)

How would you show that TMs with stay put are <u>no more</u> powerful than basic TMs?

- a) Convert any basic TM into an equivalent TM with stay put
- b) Convert any TM with stay put into an equivalent basic TM
- c) Construct a language that is recognizable by a TM with stay put, but not by any basic TM
- d) Construct a language that is recognizable by a basic TM, but not by any TM with stay put