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Last Time: Nondeterministic TMSs
\

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting branch.

Transition function § : Q XI' - P(Q XTI’ x{L,R,S})
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Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on at least
one computational branch

L(N) = {w | N accepts input w}

w € L(N) = there exists a branch of N’s computation leading it to
accept input w

w & L(N) = all branches of N’s computation lead it to reject,&
forever, or fail to reach any state on input w

An NTM N is a decider if on every input, it halts on every
computational branch

w € L(N) = there exists a branch of N’s computation leading it to
accept input w

w & L(N) = all branches of N's computation lead it to reject input w
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Nondeterministic TMs

Ex. Given TMs M; and M,, construct an NTM recognizing
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Nondeterministic TMs

Ex. NTM for L = {w |w is a binary number representing
the product of two integers a, b > 2}

High-Level Description:
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Nondeterministic TMs S@>at T M
s %) E@\

Theorem: Every nondeterministic TM can be simulated b\\(’_ '

an equivalent deterministic TM v R

Proof idea: Explore “tree of possible computations”
ariswg fev Wy NTM N, ;V\fu\- W,
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Simulating NTMs

Which of the following algorithms is always

appropriate for searching the tree of possible E :
computations for an accepting configuration?

a) Depth-first search: Explore as far as possible down
each branch before backtracking

\ b), Breadth-first search: Explore all configurations at
~ depth 1, then all configurations at depth 2, etc.

T orgmel MM o 4

c) Both algorithms will always work doder, W OFS ad
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Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent
deterministic TM
Proof idea: Simulate an NTM N using a 3-tape TM

(See Sipser for full description)

Input w to N (read-only)

e | L Y W\WL'\ Simulation tape (run N on w using
control 1 3 | ™74 nondeterministic choices from tape 3)
‘ ﬂ 3|13 |7 Address in computation tree
T = Wl 13 ndl. clore v slep 2
wit Vot waded dave
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TMs are equivalent to...

* TMs with “stay put”

 TMs with 2-way infinite tapes

* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

* Finite automata with access to an unbounded queue
* Primitive recursive functions

* Cellular automata




Church-Turing Thesis

The equivalence of these models is a mathematical
theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these
models) captures‘our intuitive notion of algorithms"”

& faikoral, pesc gt  asmelie

Church-Turing Thesis v2: Any physically realizable model
of computation can be simulated by the basic TM

A&'-N'L‘) enprfm\, Lalst Cralle

The Church-Turing Thesis is not a mathematical
statement! Can’t be mathematically proved
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Decidable Languages
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1928 — The Entscheidungsproblem

The “Decision Problem”
”"’hﬂ"!““ '."'h“"

Is there an algorithm which takes as input a formula (in f@t-
order logic) and decides whether it’s logically valid?
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Questions about regular languages
* Given a DFA Iland a string w, does D accept input w?
* Given a DFA D, does D recognize the empty language?

* Given DFAs D4, D,, do they recognize the same
language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language,
and decide them using Turing machines



Questions about regular languages

Design a TM which takes as input a DFA D and a string w,
and determines whether D accepts w

How should the input to this TM be represented?

Let D = (Q, %, d, gy, F). List each component of the tuple
separated by #

* Represent Q by ,-separated binary strings
* Represent X by ,-separated binary strings
* Represent 0 : Q X X — (Q by a ,-separated list of triples

(P, a,q), - Lilay) wen  Wan. doShiugl)

Denote the encoding of D, w by (D, w)
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Representation independence

Computability (i.e., decidability and recognizability) is not

affected by the precise choice of encoding
Supre T M fapets ot erddd whr <7

Wl Jo slde a ppueﬂ W e Gquu.ﬂj £'3

Why? A TM can always convert between different (reasonable)
encodings

On wpdt [0]) °

) (mery fem [0) b KOO
2) B M o wpd LD). Mgt 6 audhy, nd F ek

From now on, we’ll take ( ) to mean “some reasonable
encoding”
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A “universal” algorithm for recognizing regular

T LY
Ianguages v X Nz|.m
Appa = {{D,w) |DFA D accepts w} @y [5G T

Theorem: Appp is decidable

(owgdebve) QMow’” Caven 074 D, Ghingw, does 0 acgr wn ra m
wed S (Ge., b 6 LLO)?)

Proof: Define a (high-level) 3-tape TM M on input (D, w):

1. Check if (D, w) is a valid encoding (reject if not) g‘:;aag’; .
2. Simulate D onw, i.e, iy

* Tape 2: Maintain w and head location of D
* Tape 3: Maintain state of D, update according to 0

3. Acceptif D ends in an accept state, reject otherwise
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Other decidable languages
Appa = {{D,w) | DFA D accepts w}

Anra = (N, w) | NFA N accepts w}

Arex = {(R,w) | regular expression R generates w}
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NFA Acceptance .
Warka ™ Hadt 0 ek NTA Ny GiSy 9, determves
Wer N dced W

Which of the following describes a decider for Axypa =
{{N,w) [NFA N accepts w}?

a) Using a deterministic TM, simulate N on w, always making
the first nondeterministic choice at each step. Accept if it
acceptS\and reject otherwise.

Fod (v wqd st k2 B ngd e

b) Using a deterministic TM, simulate all possible choices of
N on w for 1 step of computation, 2 steps of computation,
etc. Accept whenever some simulation accepts.

O

! c)] Use the subset construction to convert N to an equivalent
DFA M. Simulate M on w, accept if it accepts, and reject
otherwise.

£



Regular Languages are Decidable

Theorem: Every regular language L is decidable

Proof 1: If L is regular, it is recognized by a DFA D. Convert
this DFAtoa TM M. Then M decides L.

Proof 2: If L is regular, it is recognized by a DFA D. The
following TM M, decides L.

On mput w: _ 540,4)) 07 O «h A,
1. Run the/deuder for@DF on input (D, w)
2. Accept if the deuder?c/cepts reject otherwise
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