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Last Time: Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting branch.

Transition function § : Q XI' - P(Q XTI x {L,R,S})
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Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on at least
one computational branch

L(N) = {w | N accepts input w}

w € L(N) = there exists a branch of N’s computation leading it to
accept input w

w & L(N) = all branches of N’s computation lead it to reject, run
forever, or fail to reach any state on input w

An NTM N is a decider if on every input, it halts on every
computational branch

w € L(N) = there exists a branch of N’s computation leading it to
accept input w

w & L(N) = all branches of N’s computation lead it to reject input w
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Nondeterministic TMs

Ex. Given TMs M; and M,, construct an NTM recognizing
L(M;) U L(M;)
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Nondeterministic TMs

Ex. NTM for L = {w |w is a binary number representing
the product of two integers a, b > 2}

High-Level Description:
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Nondeterministic TMs

Theorem: Every nondeterministic TM can be simulated by
an equivalent deterministic TM

Proof idea: Explore “tree of possible computations”
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Simulating NTMs

Which of the following algorithms is always

appropriate for searching the tree of possible E ;
computations for an accepting configuration?

a) Depth-first search: Explore as far as possible down
each branch before backtracking

b) Breadth-first search: Explore all configurations at
depth 1, then all configurations at depth 2, etc.

c) Both algorithms will always work



Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent
deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM
(See Sipser for full description)

Input w to N (read-only)

.. v : : :
Finite Simulation tape (run N on w using
Wy [ H# W3 [ Wy . e . .
control nondeterministic choices from tape 3)
!

1|13 |3 ]| 7 Address in computation tree
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TMs are equivalent to...

* TMs with “stay put”

 TMs with 2-way infinite tapes

* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

* Finite automata with access to an unbounded queue
* Primitive recursive functions

* Cellular automata



Church-Turing Thesis

The equivalence of these models is a mathematical
theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these
models) captures our intuitive notion of algorithms

Church-Turing Thesis v2: Any physically realizable model
of computation can be simulated by the basic TM

The Church-Turing Thesis is not a mathematical
statement! Can’t be mathematically proved
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Decidable Languages
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1928 — The Entscheidungsproblem

The “Decision Problem”

Is there an algorithm which takes as input a formula (in first-
order logic) and decides whether it’s logically valid?
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Questions about regular languages
* Given a DFA D and a string w, does D accept input w?
* Given a DFA D, does D recognize the empty language?

* Given DFAs D4, D,, do they recognize the same
language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language,
and decide them using Turing machines



Questions about regular languages

Design a TM which takes as input a DFA D and a string w,
and determines whether D accepts w

How should the input to this TM be represented?

Let D = (Q, %, §, qg, F). List each component of the tuple
separated by #

* Represent Q by ,-separated binary strings
* Represent X by ,-separated binary strings

* Represent 6 : Q X X — Q by a ,-separated list of triples
(v, a,q), ..

Denote the encoding of D,w by (D, w)
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Example



Representation independence

Computability (i.e., decidability and recognizability) is not
affected by the precise choice of encoding

Why? A TM can always convert between different (reasonable)
encodings

From now on, we’ll take { ) to mean “some reasonable
encoding”
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A “universal” algorithm for recognizing regular
languages
Appa = {{D,w) |DFA D accepts w}

Theorem: Apga is decidable

Proof: Define a (high-level) 3-tape TM M on input (D, w):
1. Checkif (D, w) is a valid encoding (reject if not)

2. Simulate D onw, i.e.,
e Tape 2: Maintain w and head location of D
e Tape 3: Maintain state of D, update according to

3. Acceptif D ends in an accept state, reject otherwise
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Other decidable languages
Appa = {{D,w) | DFA D accepts w}

Anpa = {{N,w) | NFA N accepts w}

Arex = {(R,w) | regular expression R generates w}
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NFA Acceptance

Which of the following describes a decider for Axypa =
{{N,w) |[NFA N accepts w}?

a) Using a deterministic TM, simulate N on w, always making
the first nondeterministic choice at each step. Accept if it
accepts, and reject otherwise.

b) Using a deterministic TM, simulate all possible choices of
N on w for 1 step of computation, 2 steps of computation,
etc. Accept whenever some simulation accepts.

c) Use the subset construction to convert N to an equivalent
DFA M. Simulate M on w, accept if it accepts, and reject
otherwise.



Regular Languages are Decidable

Theorem: Every regular language L is decidable

Proof 1: If L is regular, it is recognized by a DFA D. Convert
this DFAtoa TM M. Then M decides L.

Proof 2: If L is regular, it is recognized by a DFA D. The
following TM M, decides L.

On input w:
1. Run the decider for Apga on input (D, w)
2. Accept if the decider accepts; reject otherwise
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Classes of Languages

recognizable

regular
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More Decidable Languages: Emptiness Testing

Theorem: Eppa = {{D) | D is a DFA such that L(D) = @} is
decidable

Proof: The following TM decides Epga
On input (D), where D is a DFA with k states:

1. Perform k steps of breadth-first search on state diagram

of D to determine if an accept state is reachable from the
start state

2. Reject if a DFA accept state is reachable; accept otherwise
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Epra Example
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New Deciders from Old: Equality Testing
EQpra = {{D1, D3) |Dy, D, are DFAs and L(D;) = L(D,)}
Theorem: EQppp is decidable

Proof: The following TM decides EQpga

On input (D4, D), where (D, D,) are DFAs:

1. Construct DFA D recognizing the symmetric difference
L(D,) A L(D,)

2. Run the decider for Epgpa on (D) and return its output
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Symmetric Difference
AAB={w|w € Aorw € B but not both}
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