BU CS 332 – Theory of Computation

https://forms.gle/5oHvd11677Wi4W6c9

Lecture 12:

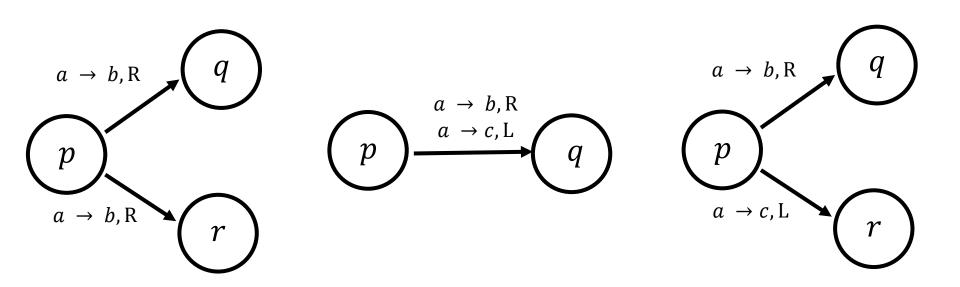
- Church-Turing Thesis
- Decidable Languages

Reading: Sipser Ch 3.3, 4.1

Mark Bun March 5, 2025

Last Time: Nondeterministic TMs

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting branch. Transition function $\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R, S\})$



An NTM N accepts input w if when run on w it accepts on at least one computational branch

 $L(N) = \{w \mid N \text{ accepts input } w\}$

 $w \in L(N) \Rightarrow$ there exists a branch of N's computation leading it to accept input w

 $w \notin L(N) \Rightarrow$ all branches of N's computation lead it to reject, run forever, or fail to reach any state on input w

An NTM *N* is a decider if on **every** input, it halts on **every** computational branch

 $w \in L(N) \Rightarrow$ there exists a branch of N's computation leading it to accept input w

 $w \notin L(N) \Rightarrow$ all branches of N's computation lead it to reject input w

Ex. Given TMs M_1 and M_2 , construct an NTM recognizing $L(M_1) \cup L(M_2)$

Ex. NTM for $L = \{w \mid w \text{ is a binary number representing the product of two integers <math>a, b \ge 2\}$

High-Level Description:

Theorem: Every nondeterministic TM can be simulated by an equivalent deterministic TM

Proof idea: Explore "tree of possible computations"

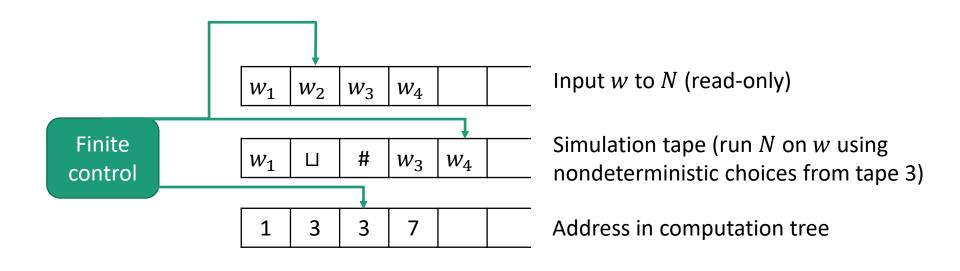
Simulating NTMs

Which of the following algorithms is always appropriate for searching the tree of possible computations for an accepting configuration?

- a) Depth-first search: Explore as far as possible down each branch before backtracking
- b) Breadth-first search: Explore all configurations at depth 1, then all configurations at depth 2, etc.
- c) Both algorithms will always work

Theorem: Every nondeterministic TM has an equivalent deterministic TM

Proof idea: Simulate an NTM *N* using a 3-tape TM (See Sipser for full description)



TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue
- Primitive recursive functions
- Cellular automata

. . .

Church-Turing Thesis

The equivalence of these models is a mathematical theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these models) captures our intuitive notion of algorithms

Church-Turing Thesis v2: Any physically realizable model of computation can be simulated by the basic TM

The Church-Turing Thesis is **not** a mathematical statement! Can't be mathematically proved

Decidable Languages

1928 – The Entscheidungsproblem

The "Decision Problem"

Is there an algorithm which takes as input a formula (in firstorder logic) and decides whether it's logically valid?

Questions about regular languages

- Given a DFA D and a string w, does D accept input w?
- Given a DFA *D*, does *D* recognize the empty language?
- Given DFAs D_1, D_2 , do they recognize the same language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language, and decide them using Turing machines

Questions about regular languages

Design a TM which takes as input a DFA *D* and a string *w*, and determines whether *D* accepts *w*

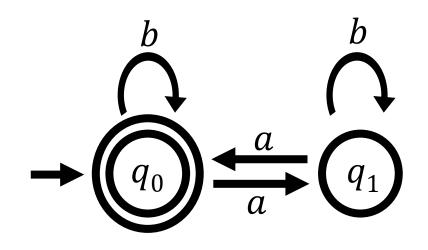
How should the input to this TM be represented?

Let $D = (Q, \Sigma, \delta, q_0, F)$. List each component of the tuple separated by #

- Represent Q by ,-separated binary strings
- Represent Σ by ,-separated binary strings
- Represent $\delta : Q \times \Sigma \rightarrow Q$ by a ,-separated list of triples $(p, a, q), \dots$

Denote the encoding of D, w by $\langle D, w \rangle$

Example



Representation independence

Computability (i.e., decidability and recognizability) is **not** affected by the precise choice of encoding

Why? A TM can always convert between different (reasonable) encodings

From now on, we'll take () to mean "some reasonable encoding"

A "universal" algorithm for recognizing regular languages $A_{DFA} = \{\langle D, w \rangle | DFA D accepts w\}$ Theorem: A_{DFA} is decidable

Proof: Define a (high-level) 3-tape TM M on input $\langle D, w \rangle$:

- 1. Check if $\langle D, w \rangle$ is a valid encoding (reject if not)
- 2. Simulate *D* on *w*, i.e.,
 - Tape 2: Maintain *w* and head location of *D*
 - Tape 3: Maintain state of D, update according to δ
- 3. Accept if *D* ends in an accept state, reject otherwise

Other decidable languages

 $A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \}$

 $A_{\rm NFA} = \{ \langle N, w \rangle \mid {\rm NFA} \ N \ {\rm accepts} \ w \}$

 $A_{\text{REX}} = \{ \langle R, w \rangle \mid \text{regular expression } R \text{ generates } w \}$

NFA Acceptance

Which of the following describes a **decider** for $A_{NFA} = \{\langle N, w \rangle | NFA N \text{ accepts } w\}$?

- a) Using a deterministic TM, simulate N on w, always making the first nondeterministic choice at each step. Accept if it accepts, and reject otherwise.
- b) Using a deterministic TM, simulate all possible choices of N on w for 1 step of computation, 2 steps of computation, etc. Accept whenever some simulation accepts.
- c) Use the subset construction to convert N to an equivalent DFA M. Simulate M on w, accept if it accepts, and reject otherwise.

Regular Languages are Decidable

Theorem: Every regular language L is decidable

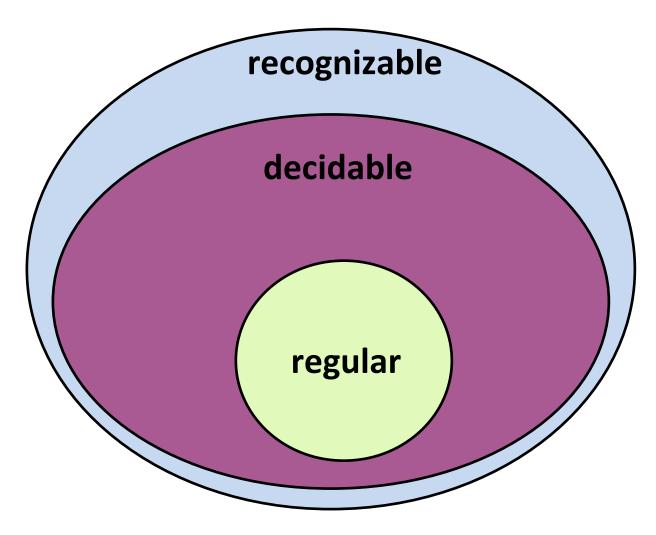
Proof 1: If L is regular, it is recognized by a DFA D. Convert this DFA to a TM M. Then M decides L.

Proof 2: If *L* is regular, it is recognized by a DFA *D*. The following TM M_D decides *L*.

On input *w*:

- 1. Run the decider for A_{DFA} on input $\langle D, w \rangle$
- 2. Accept if the decider accepts; reject otherwise

Classes of Languages



More Decidable Languages: Emptiness Testing

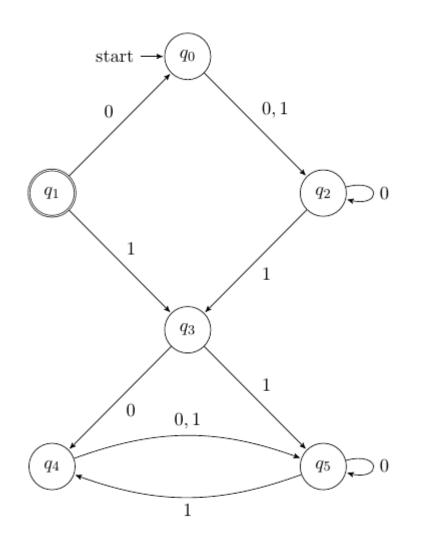
Theorem: $E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA such that } L(D) = \emptyset \}$ is decidable

Proof: The following TM decides E_{DFA}

On input $\langle D \rangle$, where D is a DFA with k states:

- 1. Perform k steps of breadth-first search on state diagram of D to determine if an accept state is reachable from the start state
- 2. Reject if a DFA accept state is reachable; accept otherwise

 E_{DFA} Example



New Deciders from Old: Equality Testing $EQ_{DFA} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$ Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct DFA *D* recognizing the **symmetric difference** $L(D_1) \bigtriangleup L(D_2)$
- 2. Run the decider for $E_{\rm DFA}$ on $\langle D \rangle$ and return its output

Symmetric Difference

 $A \bigtriangleup B = \{w \mid w \in A \text{ or } w \in B \text{ but not both}\}$