
BU CS 332 – Theory of Computation

Lecture 12:
• Church-Turing Thesis
• Decidable Languages

Reading:
Sipser Ch 3.3, 4.1

Mark Bun
March 5, 2025

https://forms.gle/5oHvd11677Wi4W6c9

https://forms.gle/5oHvd11677Wi4W6c9

Last Time: Nondeterministic TMs
At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting branch.
Transition function 𝛿𝛿 ∶ 𝑄𝑄 × Γ → 𝑃𝑃(𝑄𝑄 × Γ × L, R, S)

3/5/2025 2

𝑎𝑎 → 𝑏𝑏, R

𝑎𝑎 → 𝑏𝑏, R

𝑞𝑞

𝑟𝑟

𝑝𝑝
𝑎𝑎 → 𝑏𝑏, R
𝑎𝑎 → 𝑐𝑐, L

𝑞𝑞𝑝𝑝

𝑎𝑎 → 𝑏𝑏, R

𝑎𝑎 → 𝑐𝑐, L

𝑞𝑞

𝑟𝑟

𝑝𝑝

Nondeterministic TMs
An NTM 𝑁𝑁 accepts input 𝑤𝑤 if when run on 𝑤𝑤 it accepts on at least
one computational branch
 𝐿𝐿 𝑁𝑁 = {𝑤𝑤 ∣ 𝑁𝑁 accepts input 𝑤𝑤}
𝑤𝑤 ∈ 𝐿𝐿 𝑁𝑁 ⇒ there exists a branch of 𝑁𝑁’s computation leading it to

 accept input 𝑤𝑤
𝑤𝑤 ∉ 𝐿𝐿 𝑁𝑁 ⇒ all branches of 𝑁𝑁’s computation lead it to reject, run
 forever, or fail to reach any state on input 𝑤𝑤
An NTM 𝑁𝑁 is a decider if on every input, it halts on every
computational branch
𝑤𝑤 ∈ 𝐿𝐿 𝑁𝑁 ⇒ there exists a branch of 𝑁𝑁’s computation leading it to

 accept input 𝑤𝑤
𝑤𝑤 ∉ 𝐿𝐿 𝑁𝑁 ⇒ all branches of 𝑁𝑁’s computation lead it to reject input 𝑤𝑤

3/5/2025 CS332 - Theory of Computation 3

Nondeterministic TMs
Ex. Given TMs 𝑀𝑀1 and 𝑀𝑀2, construct an NTM recognizing
𝐿𝐿 𝑀𝑀1 ∪ 𝐿𝐿 𝑀𝑀2

3/5/2025 CS332 - Theory of Computation 4

Nondeterministic TMs
Ex. NTM for 𝐿𝐿 = 𝑤𝑤 𝑤𝑤 is a binary number representing
the product of two integers 𝑎𝑎, 𝑏𝑏 ≥ 2}
High-Level Description:

3/5/2025 CS332 - Theory of Computation 5

Nondeterministic TMs
Theorem: Every nondeterministic TM can be simulated by
an equivalent deterministic TM
Proof idea: Explore “tree of possible computations”

3/5/2025 CS332 - Theory of Computation 6

Simulating NTMs
Which of the following algorithms is always
appropriate for searching the tree of possible
computations for an accepting configuration?
a) Depth-first search: Explore as far as possible down

each branch before backtracking

b) Breadth-first search: Explore all configurations at
depth 1, then all configurations at depth 2, etc.

c) Both algorithms will always work

3/5/2025 CS332 - Theory of Computation 7

Nondeterministic TMs
Theorem: Every nondeterministic TM has an equivalent
deterministic TM
Proof idea: Simulate an NTM 𝑁𝑁 using a 3-tape TM
 (See Sipser for full description)

3/5/2025 CS332 - Theory of Computation 8

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4

Finite
control 𝑤𝑤1 ⊔ # 𝑤𝑤3 𝑤𝑤4

1 3 3 7

Input 𝑤𝑤 to 𝑁𝑁 (read-only)

Simulation tape (run 𝑁𝑁 on 𝑤𝑤 using
nondeterministic choices from tape 3)

Address in computation tree

TMs are equivalent to…
• TMs with “stay put”
• TMs with 2-way infinite tapes
• Multi-tape TMs
• Nondeterministic TMs
• Random access TMs
• Enumerators
• Finite automata with access to an unbounded queue
• Primitive recursive functions
• Cellular automata
…

3/5/2025 CS332 - Theory of Computation 9

Church-Turing Thesis
The equivalence of these models is a mathematical
theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these
models) captures our intuitive notion of algorithms

Church-Turing Thesis v2: Any physically realizable model
of computation can be simulated by the basic TM

The Church-Turing Thesis is not a mathematical
statement! Can’t be mathematically proved

3/5/2025 CS332 - Theory of Computation 10

Decidable Languages

3/5/2025 CS332 - Theory of Computation 11

1928 – The Entscheidungsproblem

3/5/2025 CS332 - Theory of Computation 12

The “Decision Problem”

Is there an algorithm which takes as input a formula (in first-
order logic) and decides whether it’s logically valid?

Questions about regular languages
• Given a DFA 𝐷𝐷 and a string 𝑤𝑤, does 𝐷𝐷 accept input 𝑤𝑤?
• Given a DFA 𝐷𝐷, does 𝐷𝐷 recognize the empty language?
• Given DFAs 𝐷𝐷1,𝐷𝐷2, do they recognize the same

language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language,
and decide them using Turing machines

3/5/2025 CS332 - Theory of Computation 13

Questions about regular languages
Design a TM which takes as input a DFA 𝐷𝐷 and a string 𝑤𝑤,
and determines whether 𝐷𝐷 accepts 𝑤𝑤

How should the input to this TM be represented?
Let 𝐷𝐷 = (𝑄𝑄, Σ, 𝛿𝛿, 𝑞𝑞0,𝐹𝐹). List each component of the tuple
separated by #
• Represent 𝑄𝑄 by ,-separated binary strings
• Represent Σ by ,-separated binary strings
• Represent 𝛿𝛿 ∶ 𝑄𝑄 × Σ → 𝑄𝑄 by a ,-separated list of triples

(𝑝𝑝, 𝑎𝑎, 𝑞𝑞), …

Denote the encoding of 𝐷𝐷,𝑤𝑤 by 𝐷𝐷,𝑤𝑤

3/5/2025 CS332 - Theory of Computation 14

Example

3/5/2025 CS332 - Theory of Computation 15

𝑞𝑞0 𝑞𝑞1

𝑏𝑏 𝑏𝑏

𝑎𝑎

𝑎𝑎

Representation independence
Computability (i.e., decidability and recognizability) is not
affected by the precise choice of encoding

Why? A TM can always convert between different (reasonable)
encodings

From now on, we’ll take to mean “some reasonable
encoding”

3/5/2025 CS332 - Theory of Computation 16

A “universal” algorithm for recognizing regular
languages
𝐴𝐴DFA = 𝐷𝐷,𝑤𝑤 DFA 𝐷𝐷 accepts 𝑤𝑤}
Theorem: 𝐴𝐴DFA is decidable

Proof: Define a (high-level) 3-tape TM 𝑀𝑀 on input 𝐷𝐷,𝑤𝑤 :
1. Check if 𝐷𝐷,𝑤𝑤 is a valid encoding (reject if not)
2. Simulate 𝐷𝐷 on 𝑤𝑤, i.e.,

• Tape 2: Maintain 𝑤𝑤 and head location of 𝐷𝐷
• Tape 3: Maintain state of 𝐷𝐷, update according to 𝛿𝛿

3. Accept if 𝐷𝐷 ends in an accept state, reject otherwise

3/5/2025 CS332 - Theory of Computation 17

Other decidable languages
𝐴𝐴DFA = 𝐷𝐷,𝑤𝑤 DFA 𝐷𝐷 accepts 𝑤𝑤}

𝐴𝐴NFA = 𝑁𝑁,𝑤𝑤 NFA 𝑁𝑁 accepts 𝑤𝑤}

𝐴𝐴REX = 𝑅𝑅,𝑤𝑤 regular expression 𝑅𝑅 generates 𝑤𝑤}

3/5/2025 CS332 - Theory of Computation 18

NFA Acceptance

3/5/2025 CS332 - Theory of Computation 19

Which of the following describes a decider for 𝐴𝐴NFA =
𝑁𝑁,𝑤𝑤 NFA 𝑁𝑁 accepts 𝑤𝑤}?

a) Using a deterministic TM, simulate 𝑁𝑁 on 𝑤𝑤, always making
the first nondeterministic choice at each step. Accept if it
accepts, and reject otherwise.

b) Using a deterministic TM, simulate all possible choices of
𝑁𝑁 on 𝑤𝑤 for 1 step of computation, 2 steps of computation,
etc. Accept whenever some simulation accepts.

c) Use the subset construction to convert 𝑁𝑁 to an equivalent
DFA 𝑀𝑀. Simulate 𝑀𝑀 on 𝑤𝑤, accept if it accepts, and reject
otherwise.

Regular Languages are Decidable
Theorem: Every regular language 𝐿𝐿 is decidable
Proof 1: If 𝐿𝐿 is regular, it is recognized by a DFA 𝐷𝐷. Convert
this DFA to a TM 𝑀𝑀. Then 𝑀𝑀 decides 𝐿𝐿.
Proof 2: If 𝐿𝐿 is regular, it is recognized by a DFA 𝐷𝐷. The
following TM 𝑀𝑀𝐷𝐷 decides 𝐿𝐿.
On input 𝑤𝑤:
1. Run the decider for 𝐴𝐴DFA on input 𝐷𝐷,𝑤𝑤
2. Accept if the decider accepts; reject otherwise

3/5/2025 CS332 - Theory of Computation 20

Classes of Languages

3/5/2025 CS332 - Theory of Computation 21

regular

recognizable

decidable

More Decidable Languages: Emptiness Testing
Theorem: 𝐸𝐸DFA = 𝐷𝐷 𝐷𝐷 is a DFA such that 𝐿𝐿 𝐷𝐷 = ∅} is
decidable
Proof: The following TM decides 𝐸𝐸DFA
On input 𝐷𝐷 , where 𝐷𝐷 is a DFA with 𝑘𝑘 states:
1. Perform 𝑘𝑘 steps of breadth-first search on state diagram

of 𝐷𝐷 to determine if an accept state is reachable from the
start state

2. Reject if a DFA accept state is reachable; accept otherwise

3/5/2025 CS332 - Theory of Computation 22

3/5/2025 CS332 - Theory of Computation 23

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 Example

New Deciders from Old: Equality Testing
𝐸𝐸𝑄𝑄DFA = ⟨𝐷𝐷1,𝐷𝐷2⟩ 𝐷𝐷1,𝐷𝐷2 are DFAs and 𝐿𝐿(𝐷𝐷1) = 𝐿𝐿(𝐷𝐷2)}
Theorem: 𝐸𝐸𝐸𝐸DFA is decidable
Proof: The following TM decides 𝐸𝐸𝑄𝑄DFA
On input ⟨𝐷𝐷1,𝐷𝐷2⟩ , where 𝐷𝐷1,𝐷𝐷2 are DFAs:
1. Construct DFA 𝐷𝐷 recognizing the symmetric difference

𝐿𝐿(𝐷𝐷1) △ 𝐿𝐿(𝐷𝐷2)
2. Run the decider for 𝐸𝐸DFA on 𝐷𝐷 and return its output

3/5/2025 CS332 - Theory of Computation 24

Symmetric Difference
𝐴𝐴 △ 𝐵𝐵 = 𝑤𝑤 𝑤𝑤 ∈ 𝐴𝐴 or 𝑤𝑤 ∈ 𝐵𝐵 but not both}

3/5/2025 CS332 - Theory of Computation 25

	BU CS 332 – Theory of Computation
	Last Time: Nondeterministic TMs
	Nondeterministic TMs
	Nondeterministic TMs
	Nondeterministic TMs
	Nondeterministic TMs
	Simulating NTMs
	Nondeterministic TMs
	TMs are equivalent to…
	Church-Turing Thesis
	Decidable Languages
	1928 – The Entscheidungsproblem
	Questions about regular languages
	Questions about regular languages
	Example
	Representation independence
	A “universal” algorithm for recognizing regular languages
	Other decidable languages
	NFA Acceptance
	Regular Languages are Decidable
	Classes of Languages
	More Decidable Languages: Emptiness Testing
	 𝐸 𝐷𝐹𝐴 Example
	New Deciders from Old: Equality Testing
	Symmetric Difference

