BU CS 332 —Theory of Computation

https://forms.gle/50Hvd11677Wi4W6c9

Lecture 12:
Reading:

* Church-Turing Thesis ,
Sipser Ch 3.3, 4.1

* Decidable Languages

Mark Bun
March 5, 2025

https://forms.gle/5oHvd11677Wi4W6c9

Last Time: Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting branch.

Transition function § : Q XI' - P(Q XTI x {L,R,S})

a > bR @ a - bR @
a > bR

O @
@ O © N0

Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on at least
one computational branch

L(N) = {w | N accepts input w}

w € L(N) = there exists a branch of N’s computation leading it to
accept input w

w & L(N) = all branches of N’s computation lead it to reject, run
forever, or fail to reach any state on input w

An NTM N is a decider if on every input, it halts on every
computational branch

w € L(N) = there exists a branch of N’s computation leading it to
accept input w

w & L(N) = all branches of N’s computation lead it to reject input w

3/5/2025 CS332 - Theory of Computation 3

Nondeterministic TMs

Ex. Given TMs M; and M,, construct an NTM recognizing
L(M;) U L(M;)

3/5/2025 CS332 - Theory of Computation 4

Nondeterministic TMs

Ex. NTM for L = {w |w is a binary number representing
the product of two integers a, b > 2}

High-Level Description:

3/5/2025 CS332 - Theory of Computation 5

Nondeterministic TMs

Theorem: Every nondeterministic TM can be simulated by
an equivalent deterministic TM

Proof idea: Explore “tree of possible computations”

3/5/2025 CS332 - Theory of Computation 6

Simulating NTMs

Which of the following algorithms is always

appropriate for searching the tree of possible E ;
computations for an accepting configuration?

a) Depth-first search: Explore as far as possible down
each branch before backtracking

b) Breadth-first search: Explore all configurations at
depth 1, then all configurations at depth 2, etc.

c) Both algorithms will always work

Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent
deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM
(See Sipser for full description)

Input w to N (read-only)

.. v : : :
Finite Simulation tape (run N on w using
Wy [H# W3 [Wy . e . .
control nondeterministic choices from tape 3)
!

1|13 |3]| 7 Address in computation tree

3/5/2025 CS332 - Theory of Computation

TMs are equivalent to...

* TMs with “stay put”

 TMs with 2-way infinite tapes

* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

* Finite automata with access to an unbounded queue
* Primitive recursive functions

* Cellular automata

Church-Turing Thesis

The equivalence of these models is a mathematical
theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these
models) captures our intuitive notion of algorithms

Church-Turing Thesis v2: Any physically realizable model
of computation can be simulated by the basic TM

The Church-Turing Thesis is not a mathematical
statement! Can’t be mathematically proved

3/5/2025 CS332 - Theory of Computation 10

Decidable Languages

3/5/2025 (CS332 - Theory of Computation

1928 — The Entscheidungsproblem

The “Decision Problem”

Is there an algorithm which takes as input a formula (in first-
order logic) and decides whether it’s logically valid?

3/5/2025 CS332 - Theory of Computation 12

Questions about regular languages
* Given a DFA D and a string w, does D accept input w?
* Given a DFA D, does D recognize the empty language?

* Given DFAs D4, D,, do they recognize the same
language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language,
and decide them using Turing machines

Questions about regular languages

Design a TM which takes as input a DFA D and a string w,
and determines whether D accepts w

How should the input to this TM be represented?

Let D = (Q, %, §, qg, F). List each component of the tuple
separated by #

* Represent Q by ,-separated binary strings
* Represent X by ,-separated binary strings

* Represent 6 : Q X X — Q by a ,-separated list of triples
(v, a,q), ..

Denote the encoding of D,w by (D, w)

3/5/2025 CS332 - Theory of Computation 14

Example

Representation independence

Computability (i.e., decidability and recognizability) is not
affected by the precise choice of encoding

Why? A TM can always convert between different (reasonable)
encodings

From now on, we’ll take {) to mean “some reasonable
encoding”

3/5/2025 CS332 - Theory of Computation 16

A “universal” algorithm for recognizing regular
languages
Appa = {{D,w) |DFA D accepts w}

Theorem: Apga is decidable

Proof: Define a (high-level) 3-tape TM M on input (D, w):
1. Checkif (D, w) is a valid encoding (reject if not)

2. Simulate D onw, i.e.,
e Tape 2: Maintain w and head location of D
e Tape 3: Maintain state of D, update according to

3. Acceptif D ends in an accept state, reject otherwise

3/5/2025 CS332 - Theory of Computation 17

Other decidable languages
Appa = {{D,w) | DFA D accepts w}

Anpa = {{N,w) | NFA N accepts w}

Arex = {(R,w) | regular expression R generates w}

3/5/2025 CS332 - Theory of Computation

18

NFA Acceptance

Which of the following describes a decider for Axypa =
{{N,w) |[NFA N accepts w}?

a) Using a deterministic TM, simulate N on w, always making
the first nondeterministic choice at each step. Accept if it
accepts, and reject otherwise.

b) Using a deterministic TM, simulate all possible choices of
N on w for 1 step of computation, 2 steps of computation,
etc. Accept whenever some simulation accepts.

c) Use the subset construction to convert N to an equivalent
DFA M. Simulate M on w, accept if it accepts, and reject
otherwise.

Regular Languages are Decidable

Theorem: Every regular language L is decidable

Proof 1: If L is regular, it is recognized by a DFA D. Convert
this DFAtoa TM M. Then M decides L.

Proof 2: If L is regular, it is recognized by a DFA D. The
following TM M, decides L.

On input w:
1. Run the decider for Apga on input (D, w)
2. Accept if the decider accepts; reject otherwise

3/5/2025 CS332 - Theory of Computation 20

Classes of Languages

recognizable

regular

3/5/2025 CS332 - Theory of Computation

21

More Decidable Languages: Emptiness Testing

Theorem: Eppa = {{D) | D is a DFA such that L(D) = @} is
decidable

Proof: The following TM decides Epga
On input (D), where D is a DFA with k states:

1. Perform k steps of breadth-first search on state diagram

of D to determine if an accept state is reachable from the
start state

2. Reject if a DFA accept state is reachable; accept otherwise

3/5/2025 CS332 - Theory of Computation 22

Epra Example

3/5/2025

CS332 - Theory of Computation

23

New Deciders from Old: Equality Testing
EQpra = {{D1, D3) |Dy, D, are DFAs and L(D;) = L(D,)}
Theorem: EQppp is decidable

Proof: The following TM decides EQpga

On input (D4, D), where (D, D,) are DFAs:

1. Construct DFA D recognizing the symmetric difference
L(D,) A L(D,)

2. Run the decider for Epgpa on (D) and return its output

3/5/2025 CS332 - Theory of Computation 24

Symmetric Difference
AAB={w|w € Aorw € B but not both}

3/5/2025 CS332 - Theory of Computation

25

	BU CS 332 – Theory of Computation
	Last Time: Nondeterministic TMs
	Nondeterministic TMs
	Nondeterministic TMs
	Nondeterministic TMs
	Nondeterministic TMs
	Simulating NTMs
	Nondeterministic TMs
	TMs are equivalent to…
	Church-Turing Thesis
	Decidable Languages
	1928 – The Entscheidungsproblem
	Questions about regular languages
	Questions about regular languages
	Example
	Representation independence
	A “universal” algorithm for recognizing regular languages
	Other decidable languages
	NFA Acceptance
	Regular Languages are Decidable
	Classes of Languages
	More Decidable Languages: Emptiness Testing
	 𝐸 𝐷𝐹𝐴 Example
	New Deciders from Old: Equality Testing
	Symmetric Difference

