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Last Time
Church-Turing Thesis

v1: The basic TM (and all equivalent models) capture our 
intuitive notion of algorithms

v2: Any physically realizable model of computation can be 
simulated by the basic TM
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Decidable languages (from language theory)
𝐴ୈ୊୅ ൌ ሼ 𝐷,𝑤 ∣ DFA 𝐷 accepts input 𝑤ሽ, etc.

Today: More decidable languages
Are there undecidable languages? How can we prove so?



A “universal” algorithm for recognizing regular 
languages
𝐴ୈ୊୅ ൌ 𝐷,𝑤  DFA 𝐷 accepts 𝑤ሽ
Theorem: 𝐴ୈ୊୅ is decidable

Proof: Define a (high-level) 3-tape TM 𝑀 on input 𝐷,𝑤 :
1. Check if 𝐷,𝑤 is a valid encoding (reject if not)
2. Simulate 𝐷 on 𝑤, i.e.,

• Tape 2: Maintain 𝑤 and head location of 𝐷
• Tape 3: Maintain state of 𝐷, update according to 𝛿

3. Accept if 𝐷 ends in an accept state, reject otherwise
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Regular Languages are Decidable
Theorem: Every regular language 𝐿 is decidable
Proof 1: If 𝐿 is regular, it is recognized by a DFA 𝐷. Convert 
this DFA to a TM 𝑀. Then 𝑀 decides 𝐿.
Proof 2: If 𝐿 is regular, it is recognized by a DFA 𝐷. The 
following TM 𝑀஽ decides 𝐿.
On input 𝑤:
1. Run the decider for 𝐴ୈ୊୅ on input 𝐷,𝑤
2. Accept if the decider accepts; reject otherwise
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Classes of Languages
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regular

recognizable

decidable



More Decidable Languages: Emptiness Testing
Theorem: 𝐸ୈ୊୅ ൌ 𝐷   𝐷 is a DFA such that 𝐿 𝐷 ൌ  ∅ሽ is 
decidable
Proof: The following TM decides 𝐸ୈ୊୅
On input 𝐷 , where 𝐷 is a DFA with 𝑘 states:
1. Perform 𝑘 steps of breadth-first search on state diagram 

of 𝐷 to determine if an accept state is reachable from the 
start state

2. Reject if a DFA accept state is reachable; accept otherwise
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𝐸஽ி஺ Example



New Deciders from Old: Equality Testing
𝐸𝑄ୈ୊୅ ൌ ⟨𝐷ଵ,𝐷ଶ⟩ 𝐷ଵ,𝐷ଶ are DFAs and 𝐿ሺ𝐷ଵሻ ൌ 𝐿ሺ𝐷ଶሻሽ
Theorem: 𝐸𝑄ୈ୊୅ is decidable
Proof: The following TM decides 𝐸𝑄ୈ୊୅
On input ⟨𝐷ଵ,𝐷ଶ⟩ , where 𝐷ଵ,𝐷ଶ are DFAs:
1. Construct DFA 𝐷 recognizing the symmetric difference 

 𝐿ሺ𝐷ଵሻ △ 𝐿ሺ𝐷ଶሻ
2. Run the decider for 𝐸ୈ୊୅ on 𝐷 and return its output
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Symmetric Difference
𝐴 △ 𝐵 ൌ 𝑤 𝑤 ∈ 𝐴 or 𝑤 ∈ 𝐵 but not bothሽ
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Universal Turing Machine
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Meta-Computational Languages
𝐴ୈ୊୅ ൌ 𝐷,𝑤   DFA 𝐷 accepts 𝑤ሽ

𝐸ୈ୊୅ ൌ 𝐷   DFA 𝐷 recognizes the empty language ∅ሽ

𝐸𝑄ୈ୊୅ ൌ 𝐷ଵ,𝐷ଶ   𝐷ଵ and 𝐷ଶ are DFAs, 𝐿 𝐷ଵ ൌ 𝐿 𝐷ଶ ሽ
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𝐴୘୑ ൌ 𝑀,𝑤   TM 𝑀 accepts 𝑤ሽ

𝐸୘୑ ൌ 𝑀   TM 𝑀 recognizes the empty language ∅ሽ

𝐸𝑄୘୑ ൌ 𝑀ଵ,𝑀ଶ   𝑀ଵ and 𝑀ଶ are TMs, 𝐿 𝑀ଵ ൌ 𝐿 𝑀ଶ ሽ



The Universal Turing Machine
𝐴୘୑ ൌ 𝑀,𝑤   𝑀 is a TM that accepts input 𝑤ሽ
Theorem: 𝐴୘୑ is Turing-recognizable

The following “Universal TM” 𝑈 recognizes 𝐴୘୑
On input 𝑀,𝑤 :
1. Simulate running 𝑀 on input 𝑤
2. If 𝑀 accepts, accept. If 𝑀 rejects, reject.

3/17/2025 CS332 - Theory of Computation 12



Universal TM and 𝐴୘୑
Why is the Universal TM not a decider for 𝐴୘୑?

The following “Universal TM” 𝑈 recognizes 𝐴୘୑

On input 𝑀,𝑤 :
1. Simulate running 𝑀 on input 𝑤
2. If 𝑀 accepts, accept. If 𝑀 rejects, reject.

a) It may reject inputs 〈𝑀,𝑤〉 where 𝑀 accepts 𝑤
b) It may accept inputs 〈𝑀,𝑤〉 where 𝑀 rejects 𝑤
c) It may loop on inputs 〈𝑀,𝑤〉 where 𝑀 loops on 𝑤
d) It may loop on inputs 〈𝑀,𝑤〉 where 𝑀 accepts 𝑤
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More on the Universal TM
"It is possible to invent a single machine which can be used to compute any 
computable sequence. If this machine U is supplied with a tape on the beginning of 
which is written the S.D ["standard description"] of some computing machine M, 
then U will compute the same sequence as M.”

- Turing, “On Computable Numbers…” 1936

• Foreshadowed general-purpose programmable computers
• No need for specialized hardware: Virtual machines as software
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Harvard architecture: 
Separate instruction and data pathways

von Neumann architecture: 
Programs can be treated as data



Undecidability
𝐴୘୑ is Turing-recognizable via the Universal TM

…but it turns out 𝐴୘୑ (and 𝐸୘୑,𝐸𝑄୘୑) is undecidable

i.e., computers cannot solve these problems no matter 
how much time they are given

How can we prove this?
… but first, a math interlude
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Countability and 
Diagonalization
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What’s your intuition?
Which of the following sets is the “biggest”?

a) The natural numbers: ℕ ൌ ሼ1, 2, 3, … ሽ

b) The even numbers: 𝐸 ൌ 2, 4, 6, …

c) The positive powers of 2: 𝑃𝑂𝑊2 ൌ ሼ2, 4, 8, 16, … ሽ

d) They all have the same size
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Set Theory Review
A function 𝑓:𝐴 → 𝐵 is
• 1-to-1 (injective) if 𝑓 𝑎 ്
𝑓 𝑎′ for all 𝑎 ് 𝑎′

• onto (surjective) if for all 𝑏 ∈ 𝐵,
there exists 𝑎 ∈ 𝐴 such that 
𝑓 𝑎 ൌ 𝑏

• a correspondence (bijective) if 
it is 1-to-1 and onto, i.e., every 
𝑏 ∈ 𝐵 has a unique 𝑎 ∈ 𝐴 with 
𝑓 𝑎 ൌ 𝑏
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How can we compare sizes of infinite sets?
Definition: Two sets have the same size if there is a 
bijection between them

A set is countable if either
• it is a finite set, or
• it has the same size as ℕ, the set of natural numbers
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Examples of countable sets
• ∅
• 0,1
• 0, 1, 2, … , 8675309

• 𝐸 ൌ  ሼ2, 4, 6, 8, … ሽ
• 𝑆𝑄𝑈𝐴𝑅𝐸𝑆 ൌ 1, 4, 9, 16, 25, …
• 𝑃𝑂𝑊2 ൌ 2, 4, 8, 16, 32, …

𝐸 ൌ 𝑆𝑄𝑈𝐴𝑅𝐸𝑆 ൌ 𝑃𝑂𝑊2 ൌ |ℕ|
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How to show that ℕ ൈ ℕ is countable?
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5, 1ሺ4, 1ሻሺ3, 1ሻሺ2, 1ሻሺ1, 1ሻ

ሺ5, 2ሻሺ4, 2ሻሺ3, 2ሻሺ2, 2ሻሺ1, 2ሻ

ሺ5, 3ሻሺ4, 3ሻሺ3, 3ሻሺ2, 3ሻሺ1, 3ሻ

ሺ5, 4ሻሺ4, 4ሻሺ3, 4ሻሺ2, 4ሻሺ1, 4ሻ

ሺ5, 5ሻሺ4, 5ሻሺ3, 5ሻሺ2, 5ሻሺ1, 5ሻ

…

…

…

…



How to argue that a set 𝑆 is countable
• Describe how to “list” the elements of 𝑆, usually in stages:
Ex: Stage 1) List all pairs ሺ𝑥,𝑦ሻ such that 𝑥 ൅ 𝑦 ൌ 2

Stage 2) List all pairs ሺ𝑥,𝑦ሻ such that 𝑥 ൅ 𝑦 ൌ 3
…
Stage 𝑛) List all pairs ሺ𝑥,𝑦ሻ such that 𝑥 ൅ 𝑦 ൌ 𝑛 ൅ 1
…

• Explain why every element of 𝑆 appears in the list
Ex: Any 𝑥,𝑦 ∈ ℕ ൈ ℕ will be listed in stage 𝑥 ൅ 𝑦 െ 1
• Define the bijection 𝑓: ℕ → 𝑆 by 𝑓 𝑛 ൌ the 𝑛’th element 

in this list (ignoring duplicates if needed)
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More examples of countable sets
• ሼ0,1ሽ ∗

• 𝑀   𝑀 is a Turing machineሽ
• ℚ ൌ  ሼrational numbersሽ

• If 𝐴 ⊆ 𝐵 and 𝐵 is countable, then 𝐴 is countable
• If 𝐴 and 𝐵 are countable, then 𝐴 ൈ 𝐵 is countable

• Nonempty 𝑆 is countable if and only if there exists a 
surjection (an onto function) 𝑓 ∶ ℕ → 𝑆
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