BU CS 332 – Theory of Computation

https://forms.gle/1Gr9hdWCUw12UKdg7

- More decidable languages
- Universal Turing Machine
- Countability

Mark Bun March 17, 2025

Reading: Sipser Ch 4.1, 4.2 HW 6 Pooldern 5 & bonus dlaged to HW7

Last Time

Church-Turing Thesis

- v1: The basic TM (and all equivalent models) capture our intuitive notion of algorithms
- v2: Any physically realizable model of computation can be simulated by the basic TM
- Decidable languages (from language theory)
- $A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts input } w \}, \text{ etc.} \}$

"En obig" of OFA D + string w

Today: More decidable languages

Are there undecidable languages? How can we prove so?

A "universal" algorithm for recognizing regular languages $A_{\text{DFA}} = \{\langle D, w \rangle | \text{DFA } D \text{ accepts } w\}$ Theorem: A_{DFA} is decidable

Proof: Define a (high-level) 3-tape TM M on input (D, w):

- 1. Check if $\langle D, w \rangle$ is a valid encoding (reject if not)
- 2. Simulate *D* on *w*, i.e.,
 - Tape 2: Maintain *w* and head location of *D*
 - Tape 3: Maintain state of D, update according to δ
- 3. Accept if *D* ends in an accept state, reject otherwise

Regular Languages are Decidable

Theorem: Every regular language *L* is decidable

Proof 1: If *L* is regular, it is recognized by a DFA *D*. Convert this DFA to a TM *M*. Then *M* decides *L*.

Proof 2: If *L* is regular, it is recognized by a DFA *D*. The following TM M_D decides *L*.

On input w: 1. Run the decider for A_{DFA} on input $\langle D, w \rangle$ 2. Accept if the decider accepts; reject otherwise (methese: * IF wel, 0 auchs = > <0, w7 = A or = > TM auchs * If well, 0 recess = > <0, w7 = A or = > TM rejects

Classes of Languages

More Decidable Languages: Emptiness Testing Theorem: $E_{DFA} = \{\langle D \rangle \mid D \text{ is a DFA such that } L(D) = \emptyset \}$ is decidable Computational Broklem: Given $\Pi FA = \emptyset$, does \emptyset , reagnize the empty language? Proof: The following TM decides E_{DFA}

On input $\langle D \rangle$, where D is a DFA with k states:

1. Perform k steps of breadth-first search on state diagram of D to determine if an accept state is reachable from the start state

2. Reject if a DFA accept state is reachable; accept otherwise

 E_{DFA} Example

New Deciders from Old: Equality Testing $EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$ Theorem: EQ_{DFA} is decidable He see large ? **Proof:** The following TM decides EQ_{DFA} On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs: $\langle Z \rangle = \int_{\mathcal{L}} \int_{\mathcal{L}}$ 1. Construct DFA <u>D</u> recognizing the symmetric difference $L(D_1) \triangle L(D_2) = \frac{2}{3} \ \omega \quad (\omega \in L(0_1) \text{ and } \oplus 4 \ (\omega \otimes 1)) \quad or \quad \frac{2}{3}$ 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output Proof of conchers. -If (01,0) = EQOFA => L(01) = L(02) => Thre is no shirts is that is no exceedly one of L(01), Leon $\Rightarrow L(0) \land L(0_2) = \phi$ by constructions => TM alleget $\Rightarrow L(0) = \phi$ · If (0, 0) \$ EQ.0.A > L(A) \$ L(O) > ? - sting is in creatly one of L(A,), L(O,) => LOJ & LOJ \$\$ => TM rejects

Symmetric Difference

 $A \bigtriangleup B = \{w \mid w \in A \text{ or } w \in B \text{ but not both}\}$

Universal Turing Machine

Meta-Computational Languages

 $A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \}$ $A_{\text{TM}} = \{ \langle M, w \rangle \mid \text{TM } M \text{ accepts } w \}$

 $E_{\text{DFA}} = \{ \langle D \rangle \mid \text{DFA } D \text{ recognizes the empty language } \emptyset \}$ $E_{\text{TM}} = \{ \langle M \rangle \mid \text{TM } M \text{ recognizes the empty language } \emptyset \}$

 $EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs}, L(D_1) = L(D_2) \}$ $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs}, L(M_1) = L(M_2) \}$

The Universal Turing Machine

 $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Theorem: A_{TM} is Turing-recognizable

The following "Universal TM" U recognizes A_{TM} On input $\langle M, w \rangle$:

1. Simulate running *M* on input *w*

2. If M accepts, accept. If M rejects, reject.
Prof of (onechose:
IF (M, w) & Arm, M accels J => U accerts /
IF (M, w) & Arm, M does not accert J => U does not accert /

Universal TM and A_{TM}

Why is the Universal TM **not** a decider for A_{TM} ?

The following "Universal TM" U recognizes A_{TM} $\underbrace{\mathsf{TM} \ \mathsf{U}}_{M, w}$: On input (M, w):

- 1. Simulate running *M* on input *w*
- 2. If *M* accepts, accept. If *M* rejects, reject.
- a) It may reject inputs $\langle M, w \rangle$ where M accepts w
- b) It may accept inputs $\langle M, w \rangle$ where M rejects w
- \bigcirc It may loop on inputs $\langle M, w \rangle$ where M loops on w
- d) It may loop on inputs $\langle M, w \rangle$ where M accepts w

More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine **U** is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine **M**, then **U** will compute the same sequence as **M**."

- Turing, "On Computable Numbers..." 1936

- Foreshadowed general-purpose programmable computers
- No need for specialized hardware: Virtual machines as software

Undecidability

 $A_{\rm TM}$ is Turing-recognizable via the Universal TM the decides each of Here ...but it turns out $A_{\rm TM}$ (and $E_{\rm TM}$, $EQ_{\rm TM}$) is **undecidable**

i.e., computers cannot solve these problems no matter how much time they are given

How can we prove this?

... but first, a math interlude

Countability and Diagonalization

What's your intuition?

Which of the following sets is the "biggest"?

- a) The natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$ b) The even numbers: $E = \{2, 4, 6, ...\}$
- c) The positive powers of 2: $POW2 = \{2, 4, 8, 16, ...\}$
- d) They all have the same size

PONZEEEIN

Set Theory Review

A function $f: A \to B$ is

- 1-to-1 (injective) if $f(a) \neq f(a')$ for all $a \neq a'$
- onto (surjective) if for all $b \in B$, there exists $a \in A$ such that f(a) = b
- a correspondence (bijective) if it is 1-to-1 and onto, i.e., every b ∈ B has a unique a ∈ A with f(a) = b

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them

A set is **countable** if either

• it is a finite set, or

• it has the same size as \mathbb{N} , the set of natural numbers \langle

Set is " countably infinite"

Examples of countable sets

$|E| = |SQUARES| = |POW2| = |\mathbb{N}|$

How t	o show t	∙hat ℕ ≻	, { (≁ , y) (N is cc	\ ze IN, puntab	уе IN3 С?	
f(1)= (1,1)	(2,1)	f(4) (3,1)	(4,1)	(5,1)		
(1,2)	(2,2) (2,2)	(3,2)	(4,2)	(5,2)		
5(6) (1,3)	(2,3)	(3,3)	(4,3)	(5,3)		
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)		
(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	•.	
•			f: IN -> (IN XN)			

How to argue that a set S is countable

- Describe how to "list" the elements of S, usually in stages:
- Ex: Stage 1) List all pairs (x, y) such that x + y = 2 (1.1) Stage 2) List all pairs (x, y) such that x + y = 3 (1.1)

Stage n) List all pairs (x, y) such that x + y = n + 1(n,) (n-',1) (1,n)

- (• Explain why every element of *S* appears in the list Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage x + y - 1
- Define the bijection $f: \mathbb{N} \to S$ by f(n) = the n'th element in this list (ignoring duplicates if needed) advantingly makes f

...

