BU CS 332 – Theory of Computation

https://forms.gle/1Gr9hdWCUw12UKdg7

Lecture 13:

- More decidable languages
- Universal Turing Machine
- Countability

Reading:

Sipser Ch 4.1, 4.2

Mark Bun
March 17, 2025

Last Time

Church-Turing Thesis

v1: The basic TM (and all equivalent models) capture our intuitive notion of algorithms

v2: Any physically realizable model of computation can be simulated by the basic TM

Decidable languages (from language theory)

 $A_{\mathrm{DFA}} = \{\langle D, w \rangle \mid \mathrm{DFA} \ D \text{ accepts input } w\}, \mathrm{etc.}$

Today: More decidable languages

Are there undecidable languages? How can we prove so?

A "universal" algorithm for recognizing regular languages

 $A_{\text{DFA}} = \{\langle D, w \rangle \mid \text{DFA } D \text{ accepts } w\}$

Theorem: A_{DFA} is decidable

Proof: Define a (high-level) 3-tape TM M on input $\langle D, w \rangle$:

- 1. Check if $\langle D, w \rangle$ is a valid encoding (reject if not)
- 2. Simulate D on w, i.e.,
 - Tape 2: Maintain w and head location of D
 - Tape 3: Maintain state of D, update according to δ
- 3. Accept if *D* ends in an accept state, reject otherwise

Regular Languages are Decidable

Theorem: Every regular language L is decidable

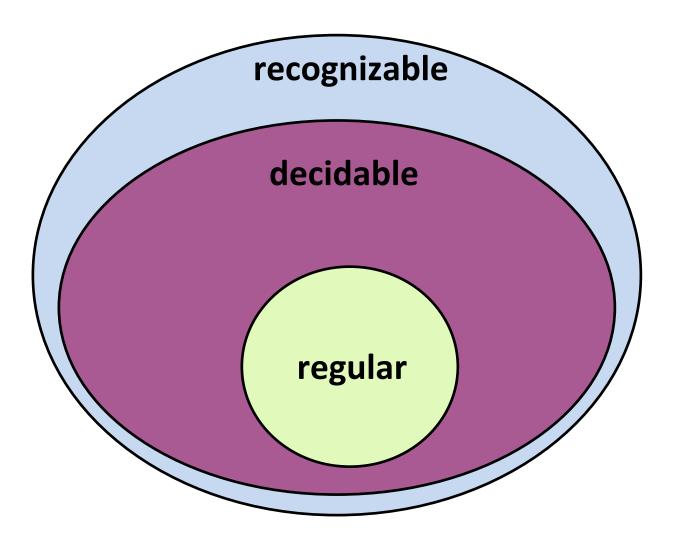
Proof 1: If L is regular, it is recognized by a DFA D. Convert this DFA to a TM M. Then M decides L.

Proof 2: If L is regular, it is recognized by a DFA D. The following TM M_D decides L.

On input w:

- 1. Run the decider for A_{DFA} on input $\langle D, w \rangle$
- 2. Accept if the decider accepts; reject otherwise

Classes of Languages



More Decidable Languages: Emptiness Testing

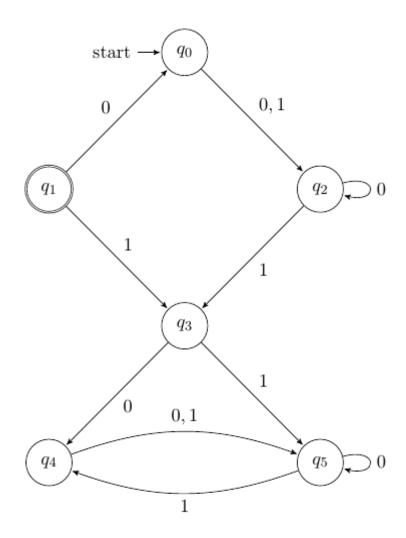
Theorem: $E_{DFA} = \{\langle D \rangle \mid D \text{ is a DFA such that } L(D) = \emptyset \}$ is decidable

Proof: The following TM decides E_{DFA}

On input $\langle D \rangle$, where D is a DFA with k states:

- 1. Perform k steps of breadth-first search on state diagram of D to determine if an accept state is reachable from the start state
- 2. Reject if a DFA accept state is reachable; accept otherwise

E_{DFA} Example



New Deciders from Old: Equality Testing

 $EQ_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$

Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct DFA D recognizing the **symmetric difference** $L(D_1) \triangle L(D_2)$
- 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output

Symmetric Difference

$$A \triangle B = \{ w \mid w \in A \text{ or } w \in B \text{ but not both} \}$$

Universal Turing Machine

Meta-Computational Languages

```
A_{\text{DFA}} = \{\langle D, w \rangle \mid \text{DFA } D \text{ accepts } w\}

A_{\text{TM}} = \{\langle M, w \rangle \mid \text{TM } M \text{ accepts } w\}
```

 $E_{\mathrm{DFA}} = \{\langle D \rangle \mid \mathrm{DFA} \ D \text{ recognizes the empty language } \emptyset \}$ $E_{\mathrm{TM}} = \{\langle M \rangle \mid \mathrm{TM} \ M \text{ recognizes the empty language } \emptyset \}$

```
EQ_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs, } L(D_1) = L(D_2)\}

EQ_{\mathrm{TM}} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs, } L(M_1) = L(M_2)\}
```

The Universal Turing Machine

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Theorem: A_{TM} is Turing-recognizable

The following "Universal TM" U recognizes $A_{\rm TM}$ On input $\langle M, w \rangle$:

- 1. Simulate running *M* on input *w*
- 2. If *M* accepts, accept. If *M* rejects, reject.

Universal TM and A_{TM}

Why is the Universal TM **not** a decider for A_{TM} ?

The following "Universal TM" U recognizes A_{TM}

On input $\langle M, w \rangle$:

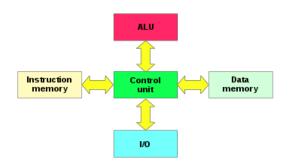
- 1. Simulate running M on input w
- 2. If *M* accepts, accept. If *M* rejects, reject.
- a) It may reject inputs $\langle M, w \rangle$ where M accepts w
- b) It may accept inputs $\langle M, w \rangle$ where M rejects w
- c) It may loop on inputs $\langle M, w \rangle$ where M loops on w
- d) It may loop on inputs $\langle M, w \rangle$ where M accepts w

More on the Universal TM

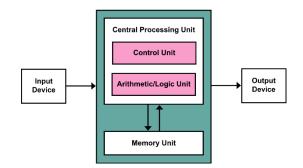
"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine **U** is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine **M**, then **U** will compute the same sequence as **M**."

- Turing, "On Computable Numbers..." 1936

- Foreshadowed general-purpose programmable computers
- No need for specialized hardware: Virtual machines as software



Harvard architecture:
Separate instruction and data pathways



von Neumann architecture: Programs can be treated as data

Undecidability

 A_{TM} is Turing-recognizable via the Universal TM

...but it turns out $A_{\rm TM}$ (and $E_{\rm TM}$, $EQ_{\rm TM}$) is **undecidable**

i.e., computers cannot solve these problems no matter how much time they are given

How can we prove this?

... but first, a math interlude

Countability and Diagonalization

What's your intuition?

Which of the following sets is the "biggest"?

- a) The natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- b) The even numbers: $E = \{2, 4, 6, ...\}$

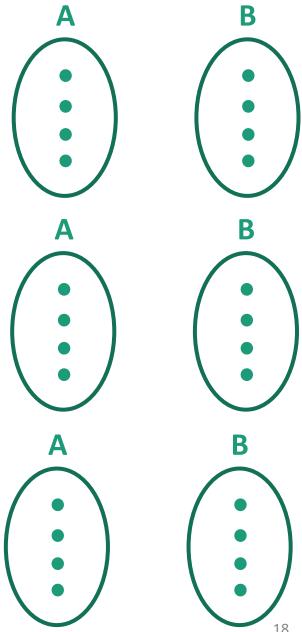
- c) The positive powers of 2: $POW2 = \{2, 4, 8, 16, ...\}$
- d) They all have the same size

Set Theory Review

A function $f: A \rightarrow B$ is

- 1-to-1 (injective) if $f(a) \neq$ f(a') for all $a \neq a'$
- onto (surjective) if for all $b \in B$, there exists $a \in A$ such that f(a) = b

 a correspondence (bijective) if it is 1-to-1 and onto, i.e., every $b \in B$ has a unique $a \in A$ with f(a) = b



How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them

A set is countable if either

- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers

Examples of countable sets

- Ø
- {0,1}
- {0, 1, 2, ..., 8675309}
- $E = \{2, 4, 6, 8, ...\}$
- $SQUARES = \{1, 4, 9, 16, 25, ...\}$
- $POW2 = \{2, 4, 8, 16, 32, ...\}$

$$|E| = |SQUARES| = |POW2| = |\mathbb{N}|$$

How to show that $\mathbb{N} \times \mathbb{N}$ is countable?

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(1, 2)

(2, 2)

(3, 2)

(4, 2)

(5, 2) ...

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

٠.

How to argue that a set S is countable

• Describe how to "list" the elements of S, usually in stages:

```
Ex: Stage 1) List all pairs (x, y) such that x + y = 2
Stage 2) List all pairs (x, y) such that x + y = 3
...
Stage n List all pairs (x, y) such that x + y = n + 1
```

- ullet Explain why every element of S appears in the list
- Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage x + y 1
- Define the bijection $f: \mathbb{N} \to S$ by f(n) = the n'th element in this list (ignoring duplicates if needed)

More examples of countable sets

- {0,1} *
- $\{\langle M \rangle \mid M \text{ is a Turing machine}\}$
- $\mathbb{Q} = \{ \text{rational numbers} \}$
- If $A \subseteq B$ and B is countable, then A is countable
- If A and B are countable, then $A \times B$ is countable

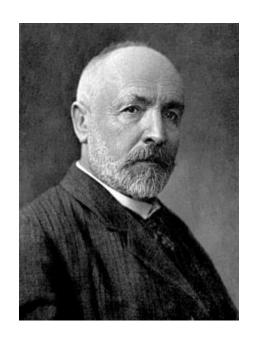
• Nonempty S is countable if and only if there exists a surjection (an onto function) $f: \mathbb{N} \to S$

Another version of the dovetailing trick

Ex: Show that $\mathcal{F} = \{L \subseteq \{0, 1\}^* \mid L \text{ is finite}\}\$ is countable

So what *isn't* countable?

Cantor's Diagonalization Method



Georg Cantor 1845-1918

- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...

Some praise for his work:

"Scientific charlatan...renegade...corruptor of youth" -L. Kronecker

"Set theory is wrong...utter nonsense...laughable"

-L. Wittgenstein

Uncountability of the reals

Theorem: The real interval [0, 1] is uncountable.

Proof: Assume for the sake of contradiction it were countable, and let $f: \mathbb{N} \to [0,1]$ be a surjection

n	f(n)
1	$0 . d_1^1 d_2^1 d_3^1 d_4^1 d_5^1$
2	$0 . d_1^2 d_2^2 d_3^2 d_4^2 d_5^2$
3	$0 . d_1^3 d_2^3 d_3^3 d_4^3 d_5^3$
4	$0 \cdot d_1^4 d_2^4 d_3^4 d_4^4 d_5^4 \dots$
5	$0 . d_1^5 d_2^5 d_3^5 d_4^5 d_5^5 $

Construct $b \in [0,1]$ which does not appear in this table – contradiction!

$$b = 0. b_1 b_2 b_3 \dots$$
 where $b_n \neq d_n^n$ (digit n of $f(n)$)

Diagonalization

This process of constructing a counterexample by "contradicting the diagonal" is called diagonalization

Structure of a diagonalization proof

Say you want to show that a set T is uncountable

- 1) Assume, for the sake of contradiction, that T is countable with surjection $f: \mathbb{N} \to T$
- 2) "Flip the diagonal" to construct an element $b \in T$ such that $f(n) \neq b$ for every n

```
Ex: Let b=0. b_1b_2b_3... where b_n \neq d_n^n (where d_n^n is digit n of f(n))
```

3) Conclude (by contradiction) that f is not a surjection

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a surjection $f: X \to P(X)$

What should we do?

- a) Show that for every $S \in P(X)$, there exists $x \in X$ such that f(x) = S
- b) Construct a set $S \in P(X)$ (meaning, $S \subseteq X$) that cannot be the output f(x) for any $x \in X$
- c) Construct a set $S \in P(X)$ and two distinct $x, x' \in X$ such that f(x) = f(x') = S

Diagonalization argument

Assume a surjection $f: X \to P(X)$

x			
x_1			
x_2			
x_3			
x_4			
i			

Diagonalization argument

Assume a surjection $f: X \to P(X)$

X	$x_1 \in f(x)$?	$x_2 \in f(x)$?	$x_3 \in f(x)$?	$x_4 \in f(x)$?	•••
x_1	Υ	N	Υ	Υ	
x_2	N	N	Υ	Υ	
x_3	Υ	Υ	Υ	N	
x_4	N	N	Υ	N	
:					*•.

Define S by flipping the diagonal:

$$x_i \in S$$

$$\iff$$

Put
$$x_i \in S \iff x_i \notin f(x_i)$$

Example

Let
$$X = \{1, 2, 3\}, P(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

x	$1 \in f(x)$?	$2 \in f(x)$?	$3 \in f(x)$?
1			
2			
3			

Construct
$$S =$$

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a surjection $f: X \to P(X)$

Construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$:

$$S = \{ x \in X \mid x \notin f(x) \}$$

If
$$S = f(y)$$
 for some $y \in X$,
then $y \in S$ if and only if $y \notin S$