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Last Time
Church-Turing Thesis
 v1: The basic TM (and all equivalent models) capture our 

      intuitive notion of algorithms
 v2: Any physically realizable model of computation can be 

      simulated by the basic TM
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Decidable languages (from language theory)
 𝐴𝐴DFA = { 𝐷𝐷,𝑤𝑤 ∣ DFA 𝐷𝐷 accepts input 𝑤𝑤}, etc.

Today: More decidable languages
             Are there undecidable languages? How can we prove so?



A “universal” algorithm for recognizing regular 
languages
𝐴𝐴DFA = 𝐷𝐷,𝑤𝑤  DFA 𝐷𝐷 accepts 𝑤𝑤}
Theorem: 𝐴𝐴DFA is decidable

Proof: Define a (high-level) 3-tape TM 𝑀𝑀 on input 𝐷𝐷,𝑤𝑤 :
1. Check if 𝐷𝐷,𝑤𝑤  is a valid encoding (reject if not)
2. Simulate 𝐷𝐷 on 𝑤𝑤, i.e.,

• Tape 2: Maintain 𝑤𝑤 and head location of 𝐷𝐷
• Tape 3: Maintain state of 𝐷𝐷, update according to 𝛿𝛿

3.  Accept if 𝐷𝐷 ends in an accept state, reject otherwise
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Regular Languages are Decidable
Theorem: Every regular language 𝐿𝐿 is decidable
Proof 1: If 𝐿𝐿 is regular, it is recognized by a DFA 𝐷𝐷. Convert 
this DFA to a TM 𝑀𝑀. Then 𝑀𝑀 decides 𝐿𝐿.
Proof 2: If 𝐿𝐿 is regular, it is recognized by a DFA 𝐷𝐷. The 
following TM 𝑀𝑀𝐷𝐷 decides 𝐿𝐿.
On input 𝑤𝑤:
1.  Run the decider for 𝐴𝐴DFA on input 𝐷𝐷,𝑤𝑤
2.  Accept if the decider accepts; reject otherwise
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Classes of Languages
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regular

recognizable

decidable



More Decidable Languages: Emptiness Testing
Theorem: 𝐸𝐸DFA = 𝐷𝐷  𝐷𝐷 is a DFA such that 𝐿𝐿 𝐷𝐷 =  ∅} is 
decidable
Proof: The following TM decides 𝐸𝐸DFA
On input 𝐷𝐷 , where 𝐷𝐷 is a DFA with 𝑘𝑘 states:
1.  Perform 𝑘𝑘 steps of breadth-first search on state diagram 

of 𝐷𝐷 to determine if an accept state is reachable from the 
start state

2.  Reject if a DFA accept state is reachable; accept otherwise
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𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 Example



New Deciders from Old: Equality Testing
𝐸𝐸𝑄𝑄DFA = ⟨𝐷𝐷1, 𝐷𝐷2⟩ 𝐷𝐷1, 𝐷𝐷2 are DFAs and 𝐿𝐿(𝐷𝐷1) = 𝐿𝐿(𝐷𝐷2)}
Theorem: 𝐸𝐸𝐸𝐸DFA is decidable
Proof: The following TM decides 𝐸𝐸𝑄𝑄DFA
On input ⟨𝐷𝐷1, 𝐷𝐷2⟩ , where 𝐷𝐷1, 𝐷𝐷2  are DFAs:
1. Construct DFA 𝐷𝐷 recognizing the symmetric difference 

𝐿𝐿(𝐷𝐷1) △ 𝐿𝐿(𝐷𝐷2)
2. Run the decider for 𝐸𝐸DFA on 𝐷𝐷  and return its output
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Symmetric Difference
𝐴𝐴 △ 𝐵𝐵 = 𝑤𝑤 𝑤𝑤 ∈ 𝐴𝐴 or 𝑤𝑤 ∈ 𝐵𝐵 but not both}
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Universal Turing Machine
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Meta-Computational Languages
𝐴𝐴DFA = 𝐷𝐷,𝑤𝑤  DFA 𝐷𝐷 accepts 𝑤𝑤}

𝐸𝐸DFA = 𝐷𝐷  DFA 𝐷𝐷 recognizes the empty language ∅}

𝐸𝐸𝐸𝐸DFA = 𝐷𝐷1, 𝐷𝐷2  𝐷𝐷1 and 𝐷𝐷2 are DFAs, 𝐿𝐿 𝐷𝐷1 = 𝐿𝐿 𝐷𝐷2 }
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𝐴𝐴TM = 𝑀𝑀,𝑤𝑤  TM 𝑀𝑀 accepts 𝑤𝑤}

𝐸𝐸TM = 𝑀𝑀  TM 𝑀𝑀 recognizes the empty language ∅}

𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2  𝑀𝑀1 and 𝑀𝑀2 are TMs, 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }



The Universal Turing Machine
𝐴𝐴TM = 𝑀𝑀,𝑤𝑤  𝑀𝑀 is a TM that accepts input 𝑤𝑤} 
Theorem: 𝐴𝐴TM is Turing-recognizable

The following “Universal TM” 𝑈𝑈 recognizes 𝐴𝐴TM
On input 𝑀𝑀,𝑤𝑤 :
1. Simulate running 𝑀𝑀 on input 𝑤𝑤
2. If 𝑀𝑀 accepts, accept. If 𝑀𝑀 rejects, reject.
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Universal TM and 𝐴𝐴TM 
Why is the Universal TM not a decider for 𝐴𝐴TM?

The following “Universal TM” 𝑈𝑈 recognizes 𝐴𝐴TM

On input 𝑀𝑀,𝑤𝑤 :
1. Simulate running 𝑀𝑀 on input 𝑤𝑤
2. If 𝑀𝑀 accepts, accept. If 𝑀𝑀 rejects, reject.

a) It may reject inputs 〈𝑀𝑀,𝑤𝑤〉 where 𝑀𝑀 accepts 𝑤𝑤
b) It may accept inputs 〈𝑀𝑀,𝑤𝑤〉 where 𝑀𝑀 rejects 𝑤𝑤
c) It may loop on inputs 〈𝑀𝑀,𝑤𝑤〉 where 𝑀𝑀 loops on 𝑤𝑤
d) It may loop on inputs 〈𝑀𝑀,𝑤𝑤〉 where 𝑀𝑀 accepts 𝑤𝑤
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More on the Universal TM
"It is possible to invent a single machine which can be used to compute any 
computable sequence. If this machine U is supplied with a tape on the beginning of 
which is written the S.D ["standard description"] of some computing machine M, 
then U will compute the same sequence as M.” 
    - Turing, “On Computable Numbers…” 1936

• Foreshadowed general-purpose programmable computers
• No need for specialized hardware: Virtual machines as software
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Harvard architecture: 
Separate instruction and data pathways

von Neumann architecture: 
Programs can be treated as data



Undecidability
𝐴𝐴TM is Turing-recognizable via the Universal TM

…but it turns out 𝐴𝐴TM (and 𝐸𝐸TM, 𝐸𝐸𝐸𝐸TM) is undecidable

i.e., computers cannot solve these problems no matter 
how much time they are given

How can we prove this?
   … but first, a math interlude
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Countability and 
Diagonalization
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What’s your intuition?
Which of the following sets is the “biggest”?

a) The natural numbers: ℕ = {1, 2, 3, … }

b) The even numbers: 𝐸𝐸 = 2, 4, 6, …

c) The positive powers of 2: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = {2, 4, 8, 16, … }

d) They all have the same size
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Set Theory Review
A function 𝑓𝑓: 𝐴𝐴 → 𝐵𝐵 is
• 1-to-1 (injective) if 𝑓𝑓 𝑎𝑎 ≠
𝑓𝑓 𝑎𝑎𝑎  for all 𝑎𝑎 ≠ 𝑎𝑎𝑎

• onto (surjective) if for all 𝑏𝑏 ∈ 𝐵𝐵, 
there exists 𝑎𝑎 ∈ 𝐴𝐴 such that 
𝑓𝑓 𝑎𝑎 = 𝑏𝑏

• a correspondence (bijective) if 
it is 1-to-1 and onto, i.e., every 
𝑏𝑏 ∈ 𝐵𝐵 has a unique 𝑎𝑎 ∈ 𝐴𝐴 with 
𝑓𝑓 𝑎𝑎 = 𝑏𝑏
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A B

A B

A B



How can we compare sizes of infinite sets?
Definition: Two sets have the same size if there is a 
bijection between them

A set is countable if either
• it is a finite set, or
• it has the same size as ℕ, the set of natural numbers
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Examples of countable sets
• ∅
• 0,1
• 0, 1, 2, … , 8675309

• 𝐸𝐸 =  {2, 4, 6, 8, … }
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1, 4, 9, 16, 25, …
• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2, 4, 8, 16, 32, …

𝐸𝐸 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = |ℕ|
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How to show that ℕ × ℕ is countable?
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(1, 1) (2, 1) (3, 1) (4, 1) 5, 1

(1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

(1, 4) (2, 4) (3, 4) (4, 4) (5, 4)

(1, 5) (2, 5) (3, 5) (4, 5) (5, 5)

…

…

…

…



How to argue that a set 𝑆𝑆 is countable
• Describe how to “list” the elements of 𝑆𝑆, usually in stages:
Ex:  Stage 1) List all pairs (𝑥𝑥, 𝑦𝑦) such that 𝑥𝑥 + 𝑦𝑦 = 2
       Stage 2) List all pairs (𝑥𝑥, 𝑦𝑦) such that 𝑥𝑥 + 𝑦𝑦 = 3
       …
       Stage 𝑛𝑛) List all pairs (𝑥𝑥, 𝑦𝑦) such that 𝑥𝑥 + 𝑦𝑦 = 𝑛𝑛 + 1
       …
• Explain why every element of 𝑆𝑆 appears in the list
Ex: Any 𝑥𝑥, 𝑦𝑦 ∈ ℕ × ℕ will be listed in stage 𝑥𝑥 + 𝑦𝑦 − 1
• Define the bijection 𝑓𝑓: ℕ → 𝑆𝑆 by 𝑓𝑓 𝑛𝑛 = the 𝑛𝑛’th element 

in this list (ignoring duplicates if needed)
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More examples of countable sets
• {0,1} ∗

• 𝑀𝑀  𝑀𝑀 is a Turing machine}
• ℚ =  {rational numbers}

• If 𝐴𝐴 ⊆ 𝐵𝐵 and 𝐵𝐵 is countable, then 𝐴𝐴 is countable
• If 𝐴𝐴 and 𝐵𝐵 are countable, then 𝐴𝐴 × 𝐵𝐵 is countable

• Nonempty 𝑆𝑆 is countable if and only if there exists a 
surjection (an onto function) 𝑓𝑓 ∶ ℕ → 𝑆𝑆
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Another version of the dovetailing trick
Ex: Show that ℱ = 𝐿𝐿 ⊆ 0, 1 ∗ 𝐿𝐿 is finite} is countable
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So what isn’t countable?
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Cantor’s Diagonalization Method
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Georg Cantor 1845-1918

• Invented set theory
• Defined countability, uncountability, 

cardinal and ordinal numbers, …

Some praise for his work:

“Scientific charlatan…renegade…corruptor of youth” 
  –L. Kronecker

“Set theory is wrong…utter nonsense…laughable” 
  –L. Wittgenstein



Uncountability of the reals
Theorem: The real interval [0, 1] is uncountable.
Proof: Assume for the sake of contradiction it were 
countable, and let 𝑓𝑓:ℕ → [0,1] be a surjection
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Construct 𝑏𝑏 ∈ [0,1] which does not appear in this table
  – contradiction!
𝑏𝑏 = 0. 𝑏𝑏1𝑏𝑏2𝑏𝑏3… where 𝑏𝑏𝑛𝑛 ≠ 𝑑𝑑𝑛𝑛𝑛𝑛 (digit 𝑛𝑛 of 𝑓𝑓(𝑛𝑛))

𝑛𝑛 𝑓𝑓(𝑛𝑛)
1 0 . 𝑑𝑑11 𝑑𝑑21 𝑑𝑑31 𝑑𝑑41 𝑑𝑑51 …
2 0 . 𝑑𝑑12 𝑑𝑑22 𝑑𝑑32 𝑑𝑑42 𝑑𝑑52 …
3 0 . 𝑑𝑑13 𝑑𝑑23 𝑑𝑑33 𝑑𝑑43 𝑑𝑑53 …
4 0 . 𝑑𝑑14 𝑑𝑑24 𝑑𝑑34 𝑑𝑑44 𝑑𝑑54 …
5 0 . 𝑑𝑑15 𝑑𝑑25 𝑑𝑑35 𝑑𝑑45 𝑑𝑑55 …



Diagonalization

This process of constructing a counterexample by 
“contradicting the diagonal” is called diagonalization
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Structure of a diagonalization proof
Say you want to show that a set 𝑇𝑇 is uncountable
1) Assume, for the sake of contradiction, that 𝑇𝑇 is 

countable with surjection 𝑓𝑓: ℕ → 𝑇𝑇
2) “Flip the diagonal” to construct an element 𝑏𝑏 ∈ 𝑇𝑇 such 

that 𝑓𝑓 𝑛𝑛 ≠ 𝑏𝑏 for every 𝑛𝑛

3) Conclude (by contradiction) that 𝑓𝑓 is not a surjection
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Ex: Let 𝑏𝑏 = 0. 𝑏𝑏1𝑏𝑏2𝑏𝑏3… where 𝑏𝑏𝑛𝑛 ≠ 𝑑𝑑𝑛𝑛𝑛𝑛   
                                                           (where 𝑑𝑑𝑛𝑛𝑛𝑛 is digit 𝑛𝑛 of 𝑓𝑓(𝑛𝑛))
   



A general theorem about set sizes
Theorem: Let 𝑋𝑋 be any set. Then the power set 𝑃𝑃(𝑋𝑋) does not 
have the same size as 𝑋𝑋.

Proof: Assume for the sake of contradiction that there is a 
surjection 𝑓𝑓: 𝑋𝑋 → 𝑃𝑃(𝑋𝑋) 

What should we do?
a) Show that for every 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋), there exists 𝑥𝑥 ∈ 𝑋𝑋 such that 

𝑓𝑓 𝑥𝑥 = 𝑆𝑆
b) Construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) (meaning, 𝑆𝑆 ⊆ 𝑋𝑋) that cannot be 

the output 𝑓𝑓(𝑥𝑥) for any 𝑥𝑥 ∈ 𝑋𝑋
c) Construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) and two distinct 𝑥𝑥, 𝑥𝑥𝑥 ∈ 𝑋𝑋 such 

that 𝑓𝑓 𝑥𝑥 = 𝑓𝑓 𝑥𝑥′ = 𝑆𝑆
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Diagonalization argument
Assume a surjection 𝑓𝑓: 𝑋𝑋 → 𝑃𝑃(𝑋𝑋) 
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𝑥𝑥

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

…



Diagonalization argument
Assume a surjection 𝑓𝑓: 𝑋𝑋 → 𝑃𝑃(𝑋𝑋) 
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𝑥𝑥 𝑥𝑥1 ∈ 𝑓𝑓(𝑥𝑥)? 𝑥𝑥2 ∈ 𝑓𝑓(𝑥𝑥)? 𝑥𝑥3 ∈ 𝑓𝑓(𝑥𝑥)? 𝑥𝑥4 ∈ 𝑓𝑓(𝑥𝑥)?

𝑥𝑥1 Y N Y Y
𝑥𝑥2 N N Y Y
𝑥𝑥3 Y Y Y N
𝑥𝑥4 N N Y N

…

…

Define 𝑆𝑆 by flipping the diagonal:
  Put      𝑥𝑥𝑖𝑖 ∈ 𝑆𝑆 ⟺ 𝑥𝑥𝑖𝑖 ∉ 𝑓𝑓(𝑥𝑥𝑖𝑖)



Example
Let 𝑋𝑋 = 1, 2, 3 , 𝑃𝑃 𝑋𝑋 = {∅, 1 , 2 , 1,2 , 1,3 , 2,3 , {1,2,3}}
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𝑥𝑥 1 ∈ 𝑓𝑓(𝑥𝑥)? 2 ∈ 𝑓𝑓(𝑥𝑥)? 3 ∈ 𝑓𝑓(𝑥𝑥)?

1

2

3

Ex. 𝑓𝑓 1 = 1, 2 , 𝑓𝑓 2 = ∅,  𝑓𝑓 3 = {2}

Construct    𝑆𝑆 =



A general theorem about set sizes
Theorem: Let 𝑋𝑋 be any set. Then the power set 𝑃𝑃(𝑋𝑋) does 
not have the same size as 𝑋𝑋.

Proof: Assume for the sake of contradiction that there is a 
surjection 𝑓𝑓: 𝑋𝑋 → 𝑃𝑃(𝑋𝑋) 

Construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) that cannot be the output 𝑓𝑓(𝑥𝑥) 
for any 𝑥𝑥 ∈ 𝑋𝑋:

𝑆𝑆 = 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥 ∉ 𝑓𝑓(𝑥𝑥)}
If 𝑆𝑆 = 𝑓𝑓(𝑦𝑦) for some 𝑦𝑦 ∈ 𝑋𝑋, 
            then 𝑦𝑦 ∈ 𝑆𝑆 if and only if 𝑦𝑦 ∉ 𝑆𝑆
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