BU CS 332 – Theory of Computation

https://forms.gle/HrsxQnUohJh4JrAo8

Lecture 14:

- Uncountability
- Undecidability

Reading:

Sipser Ch 4.2, 5.1

Mark Bun March 19, 2025

Where we are and where we're going

Church-Turing thesis: TMs capture all algorithms

Consequence: studying the limits of TMs reveals the limits of computation

Last time: Sizes of infinite sets, countability

Today: Uncountable sets

Existential proof that there are undecidable and unrecognizable languages

An explicit undecidable language?

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them

A set is countable if either

- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers

```
" company in faile"
```

t:11 >> (MXM)

How to show that $\mathbb{N} \times \mathbb{N}$ is countable?

$$(1,1)$$
 $(2,1)$ $(3,1)$ $(4,1)$ $(5,1)$...

$$(1,2)$$
 $(2,2)$ $(3,2)$ $(4,2)$ $(5,2)$...

$$(2,3)$$
 $(3,3)$ $(4,3)$ $(5,3)$...

$$(1,4)$$
 $(2,4)$ $(3,4)$ $(4,4)$ $(5,4)$...

$$(1,5)$$
 $(2,5)$ $(3,5)$ $(4,5)$ $(5,5)$

I constructed this way is or bijection

How to argue that a set S is countable

• Describe how to "list" the elements of S, usually in stages:

```
Ex: Stage 1) List all pairs (x, y) such that x + y = 2
Stage 2) List all pairs (x, y) such that x + y = 3
...
Stage n List all pairs (x, y) such that x + y = n + 1
```

- \bullet Explain why every element of S appears in the list
- Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage x + y 1
- Define the bijection $f: \mathbb{N} \to S$ by f(n) = the n'th element in this list (ignoring duplicates if needed)

Another version of the dovetailing trick


```
Ex: Show that \mathcal{F} = \{L \subseteq \{0, 1\}^* \mid L \text{ is finite}\}\ is countable
_ _ ر مر ب المال 
       Enc (L): String datased by unling dan all elts of L delanded by the
                 Ex: L= 301,011,103 Enc(L) = 01#011#10 0101110
                                                                                                                                                                                                                               201,011,103
            { Enc(L) | L in fixe } & { 0,1,4} = (smbble
                                                                                                                                                                                                                               2010,11103
                                                                                                                                                                                          Every Pule L appears in
 Sketch 2: Engrerate larguages of 92: , stages
                       Dofine m(L) = max lagh of a string in L

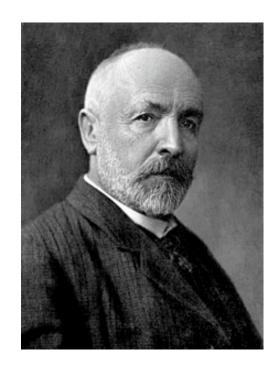
1 L1 = # of strings in L
                                                                                                                                                                                         Some stage in, moe
                                                                                                                                                                                                h= max & m(L), (L13
     Stage 1. Emirak all L s.t. m(L) El and ILIEI
                                                                                                                                                                                          or f(i) = i'th district
                                                      $ , $23, 303, $13
                                                                                                                                                                                            layuage encould is
    stage 2. Enumet all L s.t. m(L) &2 and ILIEZL
                                   Ø, $13, 203, 813, 2003, 3013, $103, $113, $2,003, $6, 13, $2,003, ..., 38,113
                    3/19/2025 : Stage n: Example all L 5.4. m(L) 5.0, 17, $0,003, ...

CS332 - Theory of Computation
```

Wy does this work?

So what *isn't* countable?

Cantor's Diagonalization Method



Georg Cantor 1845-1918

- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...

Some praise for his work:

"Scientific charlatan...renegade...corruptor of youth" -L. Kronecker

"Set theory is wrong...utter nonsense...laughable" -L. Wittgenstein

Uncountability of the reals

Theorem: The real interval [0, 1] is uncountable.

Proof: We'll show that there is no surjection $\mathbb{N} \to [0,1]$.

Let $f: \mathbb{N} \to [0,1]$ be an arbitrary function

22	f(m) and death	Ex:
$\frac{n}{}$	f(n) 2ad digit	
1	$0 d_1 d_2^1 d_3^1 d_4^1 d_5^1 \dots$	64 800= 0. 271828
2	$0.d_1^2d_2^2d_3^2d_4^2d_5^2$	6 f(2) = 0. 3 1 4 15 9 ····
3	$0.d_1^3 d_2^3 d_3^3 d_4^3 d_5^3$	4 43) = 0.8675 30
4	$0.d_1^4 d_2^4 d_3^4 d_4^4 d_5^4$	•
5	$0.d_1^5 d_2^5 d_3^5 d_4^5 d_5^5$: \(\b=0.328

Construct $b \in [0,1]$ which does not appear as any f(n)

$$b=0.$$
 $b_1b_2b_3...$ where $b_n \neq d_n^n$ (digit n of $f(n)$)

Diagonalization

This process of constructing a counterexample by "contradicting the diagonal" is called diagonalization

Structure of a diagonalization proof

Say you want to show that a set T is uncountable

- 1) Let $f: \mathbb{N} \to T$ be an arbitrary function $f: \mathbb{N} \to T$
- 2) "Flip the diagonal" to construct an element $\underline{b} \in T$ such that $f(n) \neq b$ for every n

```
Ex: Let b=0. b_1b_2b_3... where b_n\neq d_n^n (where d_n^n is digit n of f(n))
```

3) Conclude that f is not a surjection. Since f was arbitrary, there is no surjection from $\mathbb{N} \to F$ so T is not countable

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Let $f: X \to P(X)$ be arbitrary. We'll show that f is not onto (Not a surjection)

What should we do to show f isn't onto?

- a) Show that for every $S \in P(X)$, there exists $x \in X$ such that f(x) = S
- Construct a set $S \in P(X)$ (meaning, $S \subseteq X$) that cannot be the output f(x) for any $x \in X$
 - c) Construct a set $S \in P(X)$ and two distinct $x, x' \in X$ such that f(x) = f(x') = S

Diagonalization argument

Let $f: X \to P(X)$ be an arbitrary function

x			
x_1			
x_2			
x_3			
x_4			
Ē			

Diagonalization argument

rember of f(73)?

Let $f: X \to P(X)$ be an arbitrary function f(X)

X	$x_1 \in f(x)$?	$x_2 \in f(x)$?	$x_{\underline{3}} \in f(x)$?	$x_4 \in f(x)$?	
x_1	NX	N	Υ	Υ	
x_2	N	NYY	Υ	Υ	
x_3	Υ	Υ	XN	N	
x_4	N	N	Υ	NY	
i					•••

Define S by flipping the diagonal:

Put
$$x_i \in S \iff x_i \notin f(x_i)$$

S= {x2, x4, ...}

Example

Let $X = \{1, 2, 3\}, P(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Ex.
$$f(1) = \{1, 2\}, f(2) = \emptyset, f(3) = \{2\}$$

χ	$1 \in f(x)$?	$2 \in f(x)$?	$3 \in f(x)$?
1	Y N	Y	N
2	N	NY	N
3	N	Y	gy y

Construct
$$S = \{2, 3\}$$

$$f(1) \neq 5$$
 b/c $1 \notin 5$
 $f(2) \neq 5$ b/c $2 \notin f(2)$
 $f(3) \neq 5$ b/c $3 \notin f(3)$

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Let $f: X \to P(X)$ be an arbitrary function.

Define

$$S = \{ x \in X \mid x \notin f(x) \}$$

If S = f(y) for some $y \in X$,

then
$$y \in S$$
 if and only if $y \notin S$

Clami. SEP(x) for

Hence $S \in P(X)$ cannot be the output f(x) for any $x \in X$, so f is not a surjection.

Undecidable Languages

Undecidability / Unrecognizability

Definition: A language L is **undecidable** if there is no TM deciding L

Definition: A language L is unrecognizable if there is no TM recognizing L

An existential proof

Theorem: There exists an undecidable language over $\{0,1\}$

Set of all encodings of TM deciders: $X \subseteq \{0,1\}^*$

Set of all languages over {0,1}: えし しらなっかする

- a) $\{0, 1\}$
- b) $\{0,1\}^*$
- c) $\mathcal{P}(\{0,1\}^*)$: The set of all subsets of $\{0,1\}^*$
- d) $P(P(\{0,1\}^*))$: The set of all subsets of the set of all subsets of $\{0,1\}^*$

An existential proof

Theorem: There exists an undecidable language over $\{0, 1\}$ Proof:

Set of all encodings of TM deciders: $X \subseteq \{0,1\}^*$ Set of all languages over $\{0,1\}$: $P(\{0,1\}^*)$

There are more languages than there are TM deciders!

⇒ There must be an undecidable language

An existential proof

Theorem: There exists an unrecognizable language over $\{0, 1\}$ Proof:

```
Set of all encodings of TMs: X \subseteq \{0, 1\}^*
```

Set of all languages over $\{0,1\}$: $P(\{0,1\}^*)$

There are more languages than there are TM recognizers!

⇒ There must be an unrecognizable language

"Almost all" languages are undecidable

But how do we actually find one?

An Explicit Undecidable Language

Our power set size proof

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

- 1) Let $f: X \to P(X)$ be an arbitrary function
- 2) "Flip the diagonal" to construct a set $S \in P(X)$ such that $f(x) \neq S$ for every $x \in X$
- 3) Conclude that *f* is not onto

Specializing the proof

Theorem: Let X be the set of all TM deciders. Then there exists an undecidable language in $P(\{0,1\}^*)$

- 1) Consider the function $L: X \to P(\{0, 1\}^*)$ L(M) = lague decorated by M
- 2) "Flip the diagonal" to construct a language $UD \in P(\{0,1\}^*)$ such that $L(M) \neq UD$ for every $M \in X$
- 3) Conclude that L is not onto

An explicit undecidable language

TM M			
M_1			
M_2			
M_3			
M_4			
ŧ			

Why is it possible to enumerate all TMs like this?

- a) The set of all TMs is finite
- b) The set of all TMs is countably infinite
- c) The set of all TMs is uncountable

An explicit undecidable language

TM M	$M(\langle M_1 \rangle)$?	$M(\langle M_2 \rangle)$?	$M(\langle M_3 \rangle)$?	$M(\langle M_4 \rangle)$?		$D(\langle D \rangle)$?
M_1	XNZ	N	Υ	Y		
M_2	N	X	Υ	Y		
M_3	Υ	Υ	y	N		
M_4	N	N	Υ	X		
:					**	
D						

 $UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \}$ Claim: UD is undecidable