BU CS 332 – Theory of Computation

https://forms.gle/GmpaSseFf4DfeHw78

Lecture 15:

- Undecidable and Unrecognizable Languages
- Reductions

Mark Bun

March 24, 2025

Reading: Sipser Ch 4.2, 5.1

Undecidability

Last time: Countability, uncountability, and diagonalization Existential proof that there are undecidable and unrecognizable languages

Today:An explicit undecidable languageReductions: Relate decidability / undecidabilityof different problems

Specializing the proof

Theorem: Let X be the set of all TM deciders. Then there exists an undecidable language in $P(\{0, 1\}^*)$

- 1) Consider the function $\underline{L}: X \to P(\{0, 1\}^*)$
- 2) "Flip the diagonal" to construct a language $UD \in P(\{0,1\}^*)$ such that $L(M) \neq UD$ for every $M \in X$
- 3) Conclude that *UD* is undecidable, hence *L* is not onto

	An e	An explicit undecidable language If acaph, where y							
	TM M	$M(\langle M_1 \rangle)?$	$M(\langle M_2 \rangle)?$	$M(\langle M_3 \rangle)?$	$M(\langle M_4 \rangle)?$		$D(\langle A \rangle)$	D))?	
	<i>M</i> ₁	XN	Ν	Y	Y				
	<i>M</i> ₂	N	× ×	Y	Y				
	<i>M</i> ₃	Y	Y	XN	Ν				
	M_4	N	Ν	Y	XY				
/	:					•••			
	D						XN	% ү	

 $UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle\}$ Claim: UD is undecidable Assure FTSOC VD we de: Lake by some TM D (are i. 0(407) maght => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD, <0> \$ VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD => 0 model up on input <0> (are z: 0(407) model => hs def of VD => 0 model up on input <0> (b) \$ VD => 0 model => 0 mod

O devide & JO news. . Y CM7 EUO, O aceds CM) - Y CM7 EUO, O rejoits CM) An explicit undecidable language **Theorem:** $UD = \{\langle M \rangle \mid M \text{ is a TM that does$ **not**accept oninput $\langle M \rangle$ is undecidable) **Proof:** Suppose for contradiction that some TM D decides UD 1) always hilf The cares. m=D D acepts on input (D) => (D) & UD (by defin of UD) > D made a nytake on <0> (by def of UD) 2) D reserve an impart (D) => <07 EUD => 1) unde a minhalee on (0) 0 nesses up on mp.+ <0), so does not 0 In ether case, decide UD vos an arbitage TM decider, conclude UD undrivelable. 3/24/2025 -CS332 - Theory of Computation 5

A more useful undecidable language

 $A_{\rm TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Theorem: $A_{\rm TM}$ is undecidable $(a_{\rm TM}) = (a_{\rm TM}) (a_{\rm TM}$

$$(H(M, w)) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

Idea: Show that *H* can be used to construct a decider for the (undecidable) language *UD* -- a contradiction.

more useful undecidable language $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Proof (continued): $\langle M, J \rangle \in A_{TM} \Leftrightarrow TM \land a_{CM} f \to J$ Suppose, for contradiction, that <u>H</u> decides A_{TM} is the form the set of the se Consider the following TM D: "On input $\langle M \rangle$ where M is a TM: 1. Run *H* on input $\langle M, \langle M \rangle \rangle$ 2. If *H* accepts, reject. If *H* rejects, accept." <u>Claim</u>: D decides $UD = \{\langle M \rangle \mid TM \ M \ does \ not \ accept \langle M \rangle \}$ • $\langle M \rangle \in U \rangle \Rightarrow M does not accept input <math>\langle M \rangle$ (by dof. of =) $\langle M, \langle M \rangle \rangle \notin A_{TM}$ \Rightarrow H respects on input $\langle M, \langle M \rangle \rangle$ cire H defines =) U accepts on input $\langle M \rangle$. (M, CM) çue 4 duides s ment <m) (by def. of UD) · LMJ & JO 3 M accorts M S(M, CM7) E ...but this language is undecidable! => 0 resets on mont <m). 3/24/2025 CS332 - Theory of Computation 7

Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Corollary: $\overline{A_{TM}}$ is unrecognizable Proof: know A_{TM} is undecidentle \Rightarrow either $\overline{A_{TM}}$ or $\overline{A_{TM}}$ the risynizable (by Thm) $\overline{A_{TM}} = 2 \langle M, \omega 7 \rangle$ TM M does und allops und allops inde Proof of Theorem: \Rightarrow Arrow unrecognizable \Rightarrow L is recognizable $\int L$ is decidable \Rightarrow L is recognizable

Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Proof continued: <= | Supere both L and L recognizable, by TMS M, and Mz resp. Use Mi, M2 to constant a decider N for L 6041. N⁻. 1) Repeat until termination. a) Kun M, Gr are additional step an impat w. If accerts, accept. b) fin My for one step on Typet w. If accepts, reject.

Reductions

Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

"Now we've reduced the problem to one we've already solved." (Please laugh)

Reductions A reduction from problem A to problem B is an algorithm solving problem A which uses an algorithm solving problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

 $\vec{v}_{OFA} = \vec{i} \langle 20 \rangle$ o is a OFA when $L(a) = \vec{j}$ $EQ_{DFA} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$ Theorem: EQ_{DFA} is decidable Proof: The following TM decides EQ_{DFA} $\int Pedechen from EQ_{OFA}$ to EarA

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \bigtriangleup L(D_2)$

2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable $UO = \{2, MO\}$ The M does and accept inert 2mS $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Suppose H decides A_{TM}

, Reduction from UO to Arm

Consider the following TM D.

On input $\langle M \rangle$ where *M* is a TM:

- 1. Run *H* on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, reject. If *H* rejects, accept.

Claim: If *H* decides A_{TM} then *D* decides $UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}$

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:

- 1. Suppose to the contrary that B is decidable
- 2. Using a decider for B as a subroutine, construct an algorithm deciding A
- 3. But *A* is undecidable. Contradiction!

Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:

3/24/2025

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}$

Ex. M = "On input x (a natural number written in binary): For each y = 1, 2, 3, ...: If $y^2 = x$, accept. Else, continue." Is $\langle M, 101 \rangle \in HALT_{TM}$? a) Yes, because M accepts on input 101 b) Yes, because M rejects on input 101 c) No, because M rejects on input 101 d) No, because M loops on input 101

CS332 - Theory of Computation

Halting Problem

Computational problem: Given a program (TM) and input *w*, does that program halt (either accept or reject) on input *w*?

Formulation as a language:

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}$

Ex. M = "On input x (a natural number in binary): For each y = 1, 2, 3, ...: If $y^2 = x$, accept. Else, continue."

M' = "On input x (a natural number in binary): For each y = 1, 2, 3, ..., x: If $y^2 = x$, accept. Else, continue. Halting ProblemPedue fromArmIn $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a TM that halts on input } w \}$ Theorem: $HALT_{TM}$ is undecidable

Proof: Suppose for contradiction that there exists a decider *H* for $HALT_{TM}$. We construct a decider for *V* for A_{TM} as follows:

On input $\langle M, w \rangle$:

- 1. Run *H* on input $\langle M, w \rangle$
- 2. If *H* rejects, reject
- 3. If *H* accepts, run *M* on *w*
 - If *M* accepts, accept Otherwise, reject.

I use H to tost wetter M will make a decision on when not =) proceed 1 live 3, U recechs

This is a reduction from A_{TM} to $HALT_{\text{TM}}$

3/24/2025