BU CS 332 —Theory of Computation

https://forms.gle/GmpaSseFf4DfeHw78

Lecture 15: Reading:
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Unrecognizable Languages

e Reductions
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Undecidability

Last time: Countability, uncountability, and diagonalization

Existential proof that there are undecidable
and unrecognizable languages

Today:  An explicit undecidable language

Reductions: Relate decidability / undecidability
of different problems



Specializing the proof
Theorem: Let X be the set of all TM deciders. Then there
exists an undecidable language in P({0, 1}")

1) Consider the function L:X — P({0,1}")

2) “Flip the diagonal” to construct a language UD €
P({0,1}") such that L(M) # UD forevery M € X

3) Conclude that UD is undecidable, hence L is not onto

—
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UD = {{M) | M is a TM that does not accept on input (M)}
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An explicit undecidable Ianguage 6\

Theorem: UD = {{M) | M is a TM that does not accqpt on
input (M)} is undecidable
Proof: Suppose for contradiction that some(ﬁ/l D decidesm
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A more useful undecidable language

Aty = {{M,w) | M is a TM that accepts input w}

: : Comprnhnal poniem”. Gaeg ™™ M
Theorem: Aty is undecidable 5,4 o) L’ﬁ\ e w?

Proof: Assume for the sake of contradiction that TM H
decides Atp:

@X M, w)) = { accept if M accepts w

reject  if M does not accept w

ldea: Show that H can be used to construct a decider for
the (undecidable) language UD -- a contradiction.
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ore useful undecidable language

Arm = {{M,w) | M is a TM that accepts input w]}
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Suppose, for contradiction, that H decides Aty et

Consider the following TM D:
“On input (M) where M is a TM:

1. Run H on input (M, (M))
2. |If H accepts, reject. If H rejects, accept.”

Claim: D decides UD = {{M) | TM M does not accept (M)}
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Unrecognizable Languages

Theorem: A language L is decidable if and only if L and L

are both Turing-recognizable. toqnve by Oaseal

™
Corollary: Ay is unrecognizable
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Unrecognizable Languages

Theorem: A language L is decidable if and only if L and L
are both Turing-recognizable.

Proof continued: &=] Guoee Wth L and L eognPaiie,
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Classes of Languages
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Reductions
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Scientists vs. Engineers

A computer scientist and an engineer are stranded on a
desert island. They find two palm trees with one coconut
on each. The englneer cllmbs a tree, picks a coconut and
eats. :

The computer scientist climbs the second tree, picks a
coconut, climbs down, climbs up the first tree and places
it there, declaring success.

“Now we’ve reduced the problem to one we’ve already
solved.” (Please laugh)
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. a¥ coroast
Reductions E;’:,.\"ﬁ:’{ EM‘TJQ.

A reduction from problem A to problem B is an algorithm

solving problem A which uses an algorithm solving
problem B as a subroutine

If such a reduction exists, we say “A reduces to B”
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Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A
is also decidable

Bosa = 1207) 0 & = oFd e Leo) = $3
EQDFA —_ {(Dl, D2> |D1, DZ dare DFAS and L(Dl) — L(Dz)}
Theorem: EQpr, is decidable

Proof: The following TM decides EQppa
Y, e bt \&m\n EOQ gy Yo Eora

Oninput (D4, D,), where (D, D,) are DFAs:

1. Construct a DFA D that recognizes the symmetric
difference L(D;) A L(D-)

2. Run the decider for Eppa on (D) and return its output
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Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

U0 = §4m )Tm M dey Wb acegk et <D

Aty = {{M,w) | M is a TM that accepts input w}

Suppose H decides Aty

Redikie fom UQ 4o Am
Consider the following TM D. L

On input (M) where M is a TM:
1. Run H oninput (M, (M))
2. If H accepts, reject. If H rejects, accept.

Claim: If H decides A1y, then D decides
UD = {{M) | M is a TM that does not accept input (M)}
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Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that B is decidable

2. Using a decider for B as a subroutine, construct an
algorithm deciding A

3. But A is undecidable. Contradiction!



Halting Problem

Computational problem: Given a program (TM; and input w,
does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTy = {{M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number written in binary):
Foreachy = 1,2,3, ...:
< |f y2 = x, accept. Else, continue.”
A

a) Yes, because M accepts oninput 101
b) Yes, because M rejects on input 101

c) No, because M rejects on input 101
@JIngfﬁ_because M loops on input 101




Halting Problem

Computational problem: Given a program (TIVI; and input w,
does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTry = {{M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number in binary):
Foreachy = 1,2,3, ...:
Ify2 = x, accept. Else, continue.”

M' = “On input x (a natural number in binary): ,
_ : m,1ot)e

Foreachy =1,2,3,...,x: {m,
If y2 = x, accept. Else, continue. HALT .
Reject.”
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: A Jo» HALTMm
Halting Problem ~ Pedet fom 2 ™ 722
HALTry = {{M,w) |M is a TM that halts on input w}
Theorem: HALTTy is undecidable

Proof: Suppose for contradiction that there exists a decider H
for HALTtp. We construct a decider for IV for Aty as follows:
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