BU CS 332 – Theory of Computation

https://forms.gle/G5t6TLBUsBoA56cL6

Lecture 16:

• More Examples of Reductions

Sipser Ch 5.1, 5.3

Reading:

Mapping Reductions

Mark Bun

March 26, 2025

Last Time: Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Positive uses: If A reduces to B and B is decidable, then A is also decidable

Ex. E_{DFA} is decidable $\Rightarrow EQ_{\text{DFA}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Ex. *UD* is undecidable $\Rightarrow A_{TM}$ is undecidable

Halting Problem $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a TM that halts on input } w\}$ Theorem: $HALT_{TM}$ is undecidable

Proof: Suppose for contradiction that there exists a decider *H* for $HALT_{TM}$. We construct a decider for *V* for A_{TM} as follows:

On input $\langle M, w \rangle$:

- 1. Run *H* on input $\langle M, w \rangle$
- 2. If *H* rejects, reject
- 3. If H accepts, run M on w
 - If *M* accepts, accept
 Otherwise, reject.

y use H to tost wetter M will make a decision on when not · LM, WT EARM => M across input w => H anots topol (M, w) => proved to live 3, V across in live 4 (M, w) & ATM e: he. a) M loops on w =) H rejects input (M,w) =) V reach in life 2 / b) M reserved on w =) H acents (M, w) proceed In live 3, U rosech

This is a reduction from A_{TM} to $HALT_{\text{TM}}$

3/29/2025

Halting Problem

Computational problem: Given a program (TM) and input *w*, does that program halt on input *w*?

- A central problem in formal verification
- Dealing with undecidability in practice:
 - Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
 - Restrict to a "non-Turing-complete" subclass of programs for which halting is decidable
 - Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting

Ann = { < M, w?) TM M acopy input w? (empirational prove Emptiness testing for TMs Gier TM M, dees M relognise the empty larguage? $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$ **Theorem:** *E*_{TM} is undecidable **Proof:** Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider V_{TM} for A_{TM} as follows: On input $\langle M, w \rangle$: <M, WT E AMA => M aughts w => L(M) = \$ \$ => CM7 1. Run R on input ??? $\langle m \rangle$ JR repects (M) - V acuph / ZM, J7 & ATM 2. If R anots (M7: reject IF R rejects (M7: acopt. ases not all => L(m) wight This is a reduction from A_{TM} to E_{TM}

Emptiness testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: *E*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider V for A_{TM} as follows:

What do we want out of

- a) L(N) is empty iff Maccepts w
- b) L(N) is non-empty iff M
- c) L(M) is empty iff N accepts w
- L(M) is non-empty iff N accepts w

This is a reduction from A_{TM} to E_{TM}

Emptiness testing for TMs

 $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$ **Theorem:** *E*_{TM} is undecidable **Proof:** Suppose for contradiction that there exists a decider Rfor $E_{\rm TM}$. We construct a decide V for $A_{\rm TM}$ as follows: On input $\langle M, w \rangle$: Construct a TM *N* as follows: "On input x: Jgre x n which Run *M* on *w* and output the result." 2. Run R on input $\langle N \rangle$ all all des sot 3. If *R* rejects, accept. Otherwise, reject L(N) ==> K augusts => V reacts / Kuss Ann understable X _This is a reduction from A_{TM} to E_{TM} CS332 - Theory of Computation 3/29/2025 7

Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for E_{TM} as follows:

On input $\langle M \rangle$;

1. Construct TMs N_1 , N_2 as follows: $N_1 = N_2 =$

```
2. Run R on input \langle N_1, N_2 \rangle
3. If R accepts, accept. Otherwise, reject.
```

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

Equality Testing for TMS What do we want out of the machines N_1, N_2 ? a) $L(M) = \emptyset$ iff $N_1 = N_2$ (b) $L(M) = \emptyset$ iff $L(N_1) = L(N_2)$ c) $L(M) = \emptyset$ iff $N_1 \neq N_2$ d) $L(M) = \emptyset$ iff $L(N_1) \neq L(N_2)$ TM V: On input (M): // wart: V((M)) accerts (=> $L(M) = \phi$ 1. Construct TMs N_1 , N_2 as follows: $N_1 =$ $N_{2} =$ $L(N_{2}) = L(M)$ $l(N_i) = \phi$

2. Run R on input $\langle N_1, N_2 \rangle / (N_1) \leftarrow R$ and input $\langle N_1, N_2 \rangle / (N_1) \leftarrow R$ and input $\langle N_1, N_2 \rangle / (N_1) \leftarrow R$ 3. If R accepts, accept. Otherwise, reject.

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ **Theorem:** EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider *R* for EQ_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M \rangle$: $[\mathsf{T} \mathsf{N} \mathsf{V}]$ (M) E Bm う) L(M) ミの 1. Construct TMs N_1 , N_2 as follows: = $L(N_1)= \phi = L(N_2)$ N_1 = "On input x: $N_2 = M$ R aus reject" V accepts L(M)= KM) (LM) & Brm $U(N) = \phi$ \Rightarrow L(m) $\neq \phi$ F UNZ) $L(N_i) = \phi$ 2. Run R on input $\langle N_1, N_2 \rangle$ R reas J receds. 3. If *R* accepts, accept. Otherwise, reject. Hence we have ETM worked. This is a reduction from E_{TM} to EQ_{TM} not have been a deider and Frank 10

Regular language testing for TMs

 $REG_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: *REG*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for REG_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Construct a TM *N* as follows:

3. If *R* accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $REG_{\rm TM}$

M acerts input w (2)

L(N) is regular

Regular language testing for TMs

 $REG_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: *REG*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for REG_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$: N acepts X Construct a TM *N* as follows: A) こ 20.12 N = "On input x, 1. If $x \in \{0^n 1^n \mid n \ge 0\}$, accept 2. Run TM *M* on input *w* =)(N)= \$0" 3. If *M* accepts, accept. Otherwise, reject. 2. Run R on input $\langle N \rangle$ 3. If *R* accepts, accept. Otherwise, reject This is a reduction from A_{TM} to REG_{TM}

Mapping Reductions

What's wrong with the following "proof"?

🕨 🕨 Warning 🕨 🕨

Bogus "Theorem": A_{TM} is not Turing-recognizable

Bogus "Proof": Let *R* be an alleged recognizer for A_{TM} . We construct a recognizer *S* for unrecognizable language A_{TM} :

 $M \leq$ GugOn input $\langle M, w \rangle$: (input $\leftarrow A_{m}$)Gug1. Run R on input $\langle M, w \rangle$ If M loops on w_{J} 2. If R accepts, reject. If R rejects, accept. $\supset S$ subtiniop

This sure looks like a reduction from $\overline{A_{TM}}$ to A_{TM}

Mapping Reductions: Motivation

- 1. How do we formalize the notion of a reduction?
- 2. How do we use reductions to show that languages are unrecognizable?
- 3. How do we protect ourselves from accidentally "proving" bogus statements about recognizability?

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

••

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Example 1:
$$f(w) = sort(w)$$

Example 2:
$$f(\langle x, y \rangle) = x + y$$

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Example 3: $f(\langle M, w \rangle) = \langle M' \rangle$ where M is a TM, w is a string, and M' is a TM that ignores its input and simulates running M on w

Mapping Reductions <u>Definition:</u>

Let $A, B \subseteq \Sigma^*$ be languages. We say A is mapping reducible to B, written

$$A \leq_{\mathrm{m}} B$$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \Leftrightarrow f(w) \in B$

CS332 - Theory of Computation

Mapping Reductions

Definition:

Language A is mapping reducible to language B, written $A \leq_{m} B$ if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

If $A \leq_{m} B$, which of the following is true? a) $\overline{A} \leq_{m} B$ b) $A \leq_{m} \overline{B}$ c) $\overline{A} \leq_{m} \overline{B}$ d) $\overline{B} \leq_{m} \overline{A}$ (anchess not: ity wear >> f(we to (by dof. of mapping. => M access f(w) (since M decides x -> N access

Decidability wer

Theorem: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is also decidable $A \leq_{\mathrm{m}} B = A = 3$ for A = 3 fo

Proof: Let *M* be a decider for *B* and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from *A* to *B*. We can construct a decider *N* for *A* as follows:

On input *w*:

- 1. Compute f(w)
- 2. Run M on input f(w)
- If *M* accepts, accept.
 If it rejects, reject.

Undecidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable

Old Proof: Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for E_{TM} as follows:

On input $\langle M \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = M$$

 $M_2 = "On input x,$
1. Ignore x and reject"

2. Run R on input $\langle M_1, M_2 \rangle$

3. If *R* accepts, accept. Otherwise, reject.

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

New Proof: Equality Testing for TMs

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: $E_{TM} \leq_m EQ_{TM}$ (Hence EQ_{TM} is undecidable) Proof: The following TM N computes the reduction f:

On input $\langle M \rangle$: 1. Construct TMs M_1 , M_2 as follows: $M_1 = M$ $M_2 = "On input x,$ 1. Ignore x and reject"

2. Output $\langle M_1, M_2 \rangle$

Mapping Reductions: Recognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Proof: Let *M* be a recognizer for *B* and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from *A* to *B*. Construct a recognizer *N* for *A* as follows: *Proof of constructs (same or before)*:

On input w:

- 1. Compute f(w)
- 2. Run M on input f(w)
- If *M* accepts, accept.
 If it rejects, reject.

Prof of concerness (same as bofare): WEA => flw) EB (connectness of manping red.) => in accepts (correctness of m) => N accepts

Unrecognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is also unrecognizable

Corollary: If $\overline{A_{TM}} \leq_m B$, then *B* is unrecognizable