
BU CS 332 – Theory of Computation

Lecture 16:
• More Examples of Reductions
• Mapping Reductions

Reading:
Sipser Ch 5.1, 5.3

Mark Bun
March 26, 2025

https://forms.gle/G5t6TLBUsBoA56cL6

Last Time: Reductions
A reduction from problem 𝐴 to problem 𝐵 is an algorithm
for problem 𝐴 which uses an algorithm for problem 𝐵 as a
subroutine
If such a reduction exists, we say “𝐴 reduces to 𝐵”

3/29/2025 CS332 - Theory of Computation 2

Positive uses: If 𝐴 reduces to 𝐵 and 𝐵 is decidable, then 𝐴
is also decidable
Ex. 𝐸ୈ୊୅ is decidable ⇒ 𝐸𝑄ୈ୊୅ is decidable

Negative uses: If 𝐴 reduces to 𝐵 and 𝐴 is undecidable,
then 𝐵 is also undecidable
Ex. 𝑈𝐷 is undecidable ⇒ 𝐴୘୑ is undecidable

Halting Problem
𝐻𝐴𝐿𝑇୘୑ ൌ 𝑀,𝑤 𝑀 is a TM that halts on input 𝑤ሽ

Theorem: 𝐻𝐴𝐿𝑇୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider 𝐻
for 𝐻𝐴𝐿𝑇୘୑. We construct a decider for 𝑉 for 𝐴୘୑ as follows:
On input 𝑀,𝑤 :
1. Run 𝐻 on input 𝑀,𝑤
2. If 𝐻 rejects, reject
3. If 𝐻 accepts, run 𝑀 on 𝑤
4. If 𝑀 accepts, accept

Otherwise, reject.

This is a reduction from 𝐴୘୑ to 𝐻𝐴𝐿𝑇୘୑
3/29/2025 CS332 - Theory of Computation 3

Halting Problem
Computational problem: Given a program (TM) and input
𝑤, does that program halt on input 𝑤?
• A central problem in formal verification
• Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances,
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of
programs for which halting is decidable

- Use a programming language that lets a programmer
specify hints (e.g., loop invariants) that can be
compiled into a formal proof of halting

3/29/2025 CS332 - Theory of Computation 4

Emptiness testing for TMs
𝐸୘୑ ൌ 𝑀 𝑀 is a TM and 𝐿 𝑀 ൌ ∅ሽ

Theorem: 𝐸୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅
for 𝐸୘୑. We construct a decider 𝑉 for 𝐴୘୑ as follows:
On input 𝑀,𝑤 :
1. Run 𝑅 on input ???

This is a reduction from 𝐴୘୑ to 𝐸୘୑
3/29/2025 CS332 - Theory of Computation 5

Emptiness testing for TMs
𝐸୘୑ ൌ 𝑀 𝑀 is a TM and 𝐿 𝑀 ൌ ∅ሽ

Theorem: 𝐸୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅
for 𝐸୘୑. We construct a decider 𝑉 for 𝐴୘୑ as follows:
On input 𝑀,𝑤 :
1. Construct a TM 𝑁 as follows:

2. Run 𝑅 on input 𝑁
3. If 𝑅 , accept. Otherwise, reject

This is a reduction from 𝐴୘୑ to 𝐸୘୑
3/29/2025 CS332 - Theory of Computation 6

What do we want out of
machine 𝑁?
a) 𝐿ሺ𝑁ሻ is empty iff 𝑀

accepts 𝑤
b) 𝐿ሺ𝑁ሻ is non-empty iff 𝑀

accepts 𝑤
c) 𝐿ሺ𝑀ሻ is empty iff 𝑁

accepts 𝑤
d) 𝐿 𝑀 is non-empty iff 𝑁

accepts 𝑤

Emptiness testing for TMs
𝐸୘୑ ൌ 𝑀 𝑀 is a TM and 𝐿 𝑀 ൌ ∅ሽ

Theorem: 𝐸୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅
for 𝐸୘୑. We construct a decider 𝑉 for 𝐴୘୑ as follows:
On input 𝑀,𝑤 :
1. Construct a TM 𝑁 as follows:

“On input 𝑥:
Run 𝑀 on 𝑤 and output the result.”

2. Run 𝑅 on input 𝑁
3. If 𝑅 rejects, accept. Otherwise, reject

This is a reduction from 𝐴୘୑ to 𝐸୘୑
3/29/2025 CS332 - Theory of Computation 7

Equality Testing for TMs
𝐸𝑄୘୑ ൌ 𝑀ଵ,𝑀ଶ 𝑀ଵ,𝑀ଶ are TMs and 𝐿 𝑀ଵ ൌ 𝐿 𝑀ଶ ሽ

Theorem: 𝐸𝑄୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅
for 𝐸𝑄୘୑. We construct a decider for 𝐸୘୑ as follows:
On input 𝑀 :
1. Construct TMs 𝑁ଵ, 𝑁ଶ as follows:

 𝑁ଵ = 𝑁ଶ =

2. Run 𝑅 on input 𝑁ଵ,𝑁ଶ
3. If 𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸୘୑ to 𝐸𝑄୘୑
3/29/2025 CS332 - Theory of Computation 8

Equality Testing for TMs
What do we want out of the machines 𝑁ଵ,𝑁ଶ?
a) 𝐿 𝑀 ൌ ∅ iff 𝑁ଵ ൌ 𝑁ଶ b) 𝐿 𝑀 ൌ ∅ iff 𝐿 𝑁ଵ ൌ 𝐿 𝑁ଶ
c) 𝐿 𝑀 ൌ ∅ iff 𝑁ଵ ് 𝑁ଶ d) 𝐿 𝑀 ൌ ∅ iff 𝐿 𝑁ଵ ് 𝐿 𝑁ଶ

On input 𝑀 :
1. Construct TMs 𝑁ଵ, 𝑁ଶ as follows:

 𝑁ଵ = 𝑁ଶ =

2. Run 𝑅 on input 𝑁ଵ,𝑁ଶ
3. If 𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸୘୑ to 𝐸𝑄୘୑
3/29/2025 CS332 - Theory of Computation 9

Equality Testing for TMs
𝐸𝑄୘୑ ൌ 𝑀ଵ,𝑀ଶ 𝑀ଵ,𝑀ଶ are TMs and 𝐿 𝑀ଵ ൌ 𝐿 𝑀ଶ ሽ

Theorem: 𝐸𝑄୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅
for 𝐸𝑄୘୑. We construct a decider for 𝐴୘୑ as follows:
On input 𝑀 :
1. Construct TMs 𝑁ଵ, 𝑁ଶ as follows:

 𝑁ଵ = “On input 𝑥: 𝑁ଶ = 𝑀
reject”

2. Run 𝑅 on input 𝑁ଵ,𝑁ଶ
3. If 𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸୘୑ to 𝐸𝑄୘୑
3/29/2025 CS332 - Theory of Computation 10

Regular language testing for TMs
𝑅𝐸𝐺୘୑ ൌ 𝑀 𝑀 is a TM and 𝐿 𝑀 is regularሽ

Theorem: 𝑅𝐸𝐺୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅
for 𝑅𝐸𝐺୘୑. We construct a decider for 𝐴୘୑ as follows:
On input 𝑀,𝑤 :
1. Construct a TM 𝑁 as follows:

2. Run 𝑅 on input 𝑁
3. If 𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝐴୘୑ to 𝑅𝐸𝐺୘୑
3/29/2025 CS332 - Theory of Computation 11

Regular language testing for TMs
𝑅𝐸𝐺୘୑ ൌ 𝑀 𝑀 is a TM and 𝐿 𝑀 is regularሽ

Theorem: 𝑅𝐸𝐺୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅
for 𝑅𝐸𝐺୘୑. We construct a decider for 𝐴୘୑ as follows:
On input 𝑀,𝑤 :
1. Construct a TM 𝑁 as follows:

𝑁 = “On input 𝑥,
1. If 𝑥 ∈ 0௡1௡ 𝑛 ൒ 0ሽ, accept
2. Run TM 𝑀 on input 𝑤
3. If 𝑀 accepts, accept. Otherwise, reject.”

2. Run 𝑅 on input 𝑁
3. If 𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝐴୘୑ to 𝑅𝐸𝐺୘୑
3/29/2025 CS332 - Theory of Computation 12

Mapping Reductions

3/29/2025 CS332 - Theory of Computation 13

What’s wrong with the following “proof”?
Bogus “Theorem”: 𝐴୘୑ is not Turing-recognizable
Bogus “Proof”: Let 𝑅 be an alleged recognizer for 𝐴୘୑. We
construct a recognizer 𝑆 for unrecognizable language 𝐴୘୑:

On input 𝑀,𝑤 :
1. Run 𝑅 on input 𝑀,𝑤
2. If 𝑅 accepts, reject. If 𝑅 rejects, accept.

This sure looks like a reduction from 𝐴୘୑ to 𝐴୘୑
3/29/2025 CS332 - Theory of Computation 14

Warning

Mapping Reductions: Motivation

1. How do we formalize the notion of a reduction?
2. How do we use reductions to show that languages are

unrecognizable?
3. How do we protect ourselves from accidentally

“proving” bogus statements about recognizability?

3/29/2025 CS332 - Theory of Computation 15

Computable Functions
Definition:
A function 𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀
which, given as input any 𝑤 ∈ Σ∗, halts with only 𝑓ሺ𝑤ሻ on
its tape. (“Outputs 𝑓ሺ𝑤ሻ”)

3/29/2025 CS332 - Theory of Computation 16

Computable Functions
Definition:
A function 𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀
which, given as input any 𝑤 ∈ Σ∗, halts with only 𝑓ሺ𝑤ሻ on
its tape. (“Outputs 𝑓ሺ𝑤ሻ”)

Example 1: 𝑓 𝑤 ൌ sort 𝑤

Example 2: 𝑓 𝑥,𝑦 ൌ 𝑥 ൅ 𝑦

3/29/2025 CS332 - Theory of Computation 17

Computable Functions
Definition:
A function 𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀
which, given as input any 𝑤 ∈ Σ∗, halts with only 𝑓ሺ𝑤ሻ on
its tape. (“Outputs 𝑓ሺ𝑤ሻ”)

Example 3: 𝑓 𝑀,𝑤 = 𝑀′ where 𝑀 is a TM, 𝑤 is a
string, and 𝑀’ is a TM that ignores its input and simulates
running 𝑀 on 𝑤

3/29/2025 CS332 - Theory of Computation 18

Mapping Reductions
Definition:
Let 𝐴,𝐵 ⊆ Σ∗ be languages. We say 𝐴 is mapping reducible
to 𝐵, written

𝐴 ൑୫ 𝐵
if there is a computable function 𝑓: Σ∗ → Σ∗ such that for
all strings 𝑤 ∈ Σ∗, we have 𝑤 ∈ 𝐴⟺ 𝑓ሺ𝑤ሻ ∈ 𝐵

3/29/2025 CS332 - Theory of Computation 19

Mapping Reductions
Definition:
Language 𝐴 is mapping reducible to language 𝐵, written

𝐴 ൑୫ 𝐵
if there is a computable function 𝑓: Σ∗ → Σ∗ such that for
all strings 𝑤 ∈ Σ∗, we have 𝑤 ∈ 𝐴⟺ 𝑓ሺ𝑤ሻ ∈ 𝐵

If 𝐴 ൑୫ 𝐵, which of the following is true?
a) 𝐴 ൑୫ 𝐵
b) 𝐴 ൑୫ 𝐵ത
c) 𝐴 ൑୫ 𝐵ത
d) 𝐵ത ൑୫ 𝐴

3/29/2025 CS332 - Theory of Computation 20

Decidability

Theorem: If 𝐴 ൑୫ 𝐵 and 𝐵 is decidable, then 𝐴 is also
decidable
Proof: Let 𝑀 be a decider for 𝐵 and let 𝑓: Σ∗ → Σ∗ be a
mapping reduction from 𝐴 to 𝐵. We can construct a
decider 𝑁 for 𝐴 as follows:

On input 𝑤:
1. Compute 𝑓ሺ𝑤ሻ
2. Run 𝑀 on input 𝑓ሺ𝑤ሻ
3. If 𝑀 accepts, accept.

If it rejects, reject.
3/29/2025 CS332 - Theory of Computation 21

Undecidability

Theorem: If 𝐴 ൑୫ 𝐵 and 𝐵 is decidable, then 𝐴 is also
decidable

Corollary: If 𝐴 ൑୫ 𝐵 and 𝐴 is undecidable, then 𝐵 is also
undecidable

3/29/2025 CS332 - Theory of Computation 22

Old Proof: Equality Testing for TMs
𝐸𝑄୘୑ ൌ 𝑀ଵ,𝑀ଶ 𝑀ଵ,𝑀ଶ are TMs and 𝐿 𝑀ଵ ൌ 𝐿 𝑀ଶ ሽ

Theorem: 𝐸𝑄୘୑ is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅
for 𝐸𝑄୘୑. We construct a decider for 𝐸୘୑ as follows:
On input 𝑀 :
1. Construct TMs 𝑀ଵ, 𝑀ଶ as follows:
 𝑀ଵ = 𝑀 𝑀ଶ = “On input 𝑥,

1. Ignore 𝑥 and reject”

2. Run 𝑅 on input 𝑀ଵ,𝑀ଶ
3. If 𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸୘୑ to 𝐸𝑄୘୑

3/29/2025 CS332 - Theory of Computation 23

New Proof: Equality Testing for TMs
𝐸𝑄୘୑ ൌ 𝑀ଵ,𝑀ଶ 𝑀ଵ,𝑀ଶ are TMs and 𝐿 𝑀ଵ ൌ 𝐿 𝑀ଶ ሽ

Theorem: 𝐸୘୑ ൑୫ 𝐸𝑄୘୑ (Hence 𝐸𝑄୘୑ is undecidable)
Proof: The following TM 𝑁 computes the reduction 𝑓:

On input 𝑀 :
1. Construct TMs 𝑀ଵ, 𝑀ଶ as follows:
 𝑀ଵ = 𝑀 𝑀ଶ = “On input 𝑥,

1. Ignore 𝑥 and reject”
2. Output 𝑀ଵ,𝑀ଶ

3/29/2025 CS332 - Theory of Computation 24

Mapping Reductions: Recognizability

3/29/2025 CS332 - Theory of Computation 25

Theorem: If 𝐴 ൑୫ 𝐵 and 𝐵 is recognizable, then 𝐴 is also
recognizable

Proof: Let 𝑀 be a recognizer for 𝐵 and let 𝑓: Σ∗ → Σ∗ be a
mapping reduction from 𝐴 to 𝐵. Construct a recognizer
𝑁 for 𝐴 as follows:

On input 𝑤:
1. Compute 𝑓ሺ𝑤ሻ
2. Run 𝑀 on input 𝑓ሺ𝑤ሻ
3. If 𝑀 accepts, accept.

If it rejects, reject.

Unrecognizability

Theorem: If 𝐴 ൑୫ 𝐵 and 𝐵 is recognizable, then 𝐴 is also
recognizable

Corollary: If 𝐴 ൑୫ 𝐵 and 𝐴 is unrecognizable, then 𝐵 is
also unrecognizable

Corollary: If 𝐴୘୑ ൑୫ 𝐵, then 𝐵 is unrecognizable

3/29/2025 CS332 - Theory of Computation 26

