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Last Time: Reductions
A reduction from problem 𝐴𝐴 to problem 𝐵𝐵 is an algorithm 
for problem 𝐴𝐴 which uses an algorithm for problem 𝐵𝐵 as a 
subroutine
If such a reduction exists, we say “𝐴𝐴 reduces to 𝐵𝐵”
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Positive uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝐴𝐴 
is also decidable
Ex. 𝐸𝐸DFA is decidable ⇒ 𝐸𝐸𝐸𝐸DFA is decidable

Negative uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐴𝐴 is undecidable, 
then 𝐵𝐵 is also undecidable
Ex. 𝑈𝑈𝐷𝐷 is undecidable ⇒ 𝐴𝐴TM is undecidable 



Halting Problem
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻TM = 𝑀𝑀,𝑤𝑤  𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Theorem: 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝐻𝐻 
for 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻TM. We construct a decider for 𝑉𝑉 for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝐻𝐻 on input 𝑀𝑀,𝑤𝑤
2. If 𝐻𝐻 rejects, reject
3. If 𝐻𝐻 accepts, run 𝑀𝑀 on 𝑤𝑤
4. If 𝑀𝑀 accepts, accept
       Otherwise, reject.

      This is a reduction from 𝐴𝐴TM to 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻TM
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Halting Problem
Computational problem: Given a program (TM) and input 
𝑤𝑤, does that program halt on input 𝑤𝑤?
• A central problem in formal verification
• Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances, 
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of 
programs for which halting is decidable

- Use a programming language that lets a programmer 
specify hints (e.g., loop invariants) that can be 
compiled into a formal proof of halting
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Emptiness testing for TMs
𝐸𝐸TM = 𝑀𝑀  𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅 
for 𝐸𝐸TM. We construct a decider 𝑉𝑉 for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝑅𝑅 on input ???

This is a reduction from 𝐴𝐴TM to 𝐸𝐸TM
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Emptiness testing for TMs
𝐸𝐸TM = 𝑀𝑀  𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅 
for 𝐸𝐸TM. We construct a decider 𝑉𝑉 for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅                , accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝐸𝐸TM
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What do we want out of 
machine 𝑁𝑁?
a)  𝐿𝐿(𝑁𝑁) is empty iff 𝑀𝑀 

accepts 𝑤𝑤
b)  𝐿𝐿(𝑁𝑁) is non-empty iff 𝑀𝑀 

accepts 𝑤𝑤
c)  𝐿𝐿(𝑀𝑀) is empty iff 𝑁𝑁 

accepts 𝑤𝑤
d)  𝐿𝐿 𝑀𝑀  is non-empty iff 𝑁𝑁 

accepts 𝑤𝑤



Emptiness testing for TMs
𝐸𝐸TM = 𝑀𝑀  𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅 
for 𝐸𝐸TM. We construct a decider 𝑉𝑉 for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:
       “On input 𝑥𝑥:
 Run 𝑀𝑀 on 𝑤𝑤 and output the result.”
2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 rejects, accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝐸𝐸TM
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Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2  𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }

Theorem: 𝐸𝐸𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅 
for 𝐸𝐸𝐸𝐸TM. We construct a decider for 𝐸𝐸TM as follows:
On input 𝑀𝑀 :
1. Construct TMs 𝑁𝑁1, 𝑁𝑁2 as follows:
   𝑁𝑁1 =    𝑁𝑁2 =

2. Run 𝑅𝑅 on input 𝑁𝑁1,𝑁𝑁2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
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Equality Testing for TMs
What do we want out of the machines 𝑁𝑁1,𝑁𝑁2?
a)  𝐿𝐿 𝑀𝑀 = ∅ iff 𝑁𝑁1 = 𝑁𝑁2     b) 𝐿𝐿 𝑀𝑀 = ∅ iff 𝐿𝐿 𝑁𝑁1 = 𝐿𝐿 𝑁𝑁2
c)  𝐿𝐿 𝑀𝑀 = ∅ iff 𝑁𝑁1 ≠ 𝑁𝑁2     d) 𝐿𝐿 𝑀𝑀 = ∅ iff 𝐿𝐿 𝑁𝑁1 ≠ 𝐿𝐿 𝑁𝑁2

On input 𝑀𝑀 :
1. Construct TMs 𝑁𝑁1, 𝑁𝑁2 as follows:
   𝑁𝑁1 =    𝑁𝑁2 =

2. Run 𝑅𝑅 on input 𝑁𝑁1,𝑁𝑁2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.
           This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
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Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2  𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }

Theorem: 𝐸𝐸𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅 
for 𝐸𝐸𝐸𝐸TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀 :
1. Construct TMs 𝑁𝑁1, 𝑁𝑁2 as follows:
   𝑁𝑁1 = “On input 𝑥𝑥:  𝑁𝑁2 = 𝑀𝑀
           reject”

2. Run 𝑅𝑅 on input 𝑁𝑁1,𝑁𝑁2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
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Regular language testing for TMs
𝑅𝑅𝑅𝑅𝑅𝑅TM = 𝑀𝑀  𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀  is regular}

Theorem: 𝑅𝑅𝑅𝑅𝑅𝑅TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅 
for 𝑅𝑅𝑅𝑅𝑅𝑅TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:
 

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝑅𝑅𝑅𝑅𝑅𝑅TM
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Regular language testing for TMs
𝑅𝑅𝑅𝑅𝑅𝑅TM = 𝑀𝑀  𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀  is regular}

Theorem: 𝑅𝑅𝑅𝑅𝑅𝑅TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅 
for 𝑅𝑅𝑅𝑅𝑅𝑅TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:
 𝑁𝑁 = “On input 𝑥𝑥,
  1. If 𝑥𝑥 ∈ 0𝑛𝑛1𝑛𝑛 𝑛𝑛 ≥ 0}, accept
  2. Run TM 𝑀𝑀 on input 𝑤𝑤
  3. If 𝑀𝑀 accepts, accept. Otherwise, reject.”
2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝑅𝑅𝑅𝑅𝑅𝑅TM
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Mapping Reductions
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What’s wrong with the following “proof”?
Bogus “Theorem”: 𝐴𝐴TM is not Turing-recognizable
Bogus “Proof”: Let 𝑅𝑅 be an alleged recognizer for 𝐴𝐴TM. We 
construct a recognizer 𝑆𝑆 for unrecognizable language 𝐴𝐴TM:

On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝑅𝑅 on input 𝑀𝑀,𝑤𝑤
2. If 𝑅𝑅 accepts, reject. If 𝑅𝑅 rejects, accept.

This sure looks like a reduction from 𝐴𝐴TM to 𝐴𝐴TM
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Warning



Mapping Reductions: Motivation

1. How do we formalize the notion of a reduction?
2. How do we use reductions to show that languages are 

unrecognizable?
3. How do we protect ourselves from accidentally 

“proving” bogus statements about recognizability?
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Computable Functions
Definition: 
A function 𝑓𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀𝑀 
which, given as input any 𝑤𝑤 ∈ Σ∗, halts with only 𝑓𝑓(𝑤𝑤) on 
its tape.  (“Outputs 𝑓𝑓(𝑤𝑤)”)
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Computable Functions
Definition: 
A function 𝑓𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀𝑀 
which, given as input any 𝑤𝑤 ∈ Σ∗, halts with only 𝑓𝑓(𝑤𝑤) on 
its tape.  (“Outputs 𝑓𝑓(𝑤𝑤)”)

Example 1: 𝑓𝑓 𝑤𝑤 = sort 𝑤𝑤

Example 2: 𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 + 𝑦𝑦
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Computable Functions
Definition: 
A function 𝑓𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀𝑀 
which, given as input any 𝑤𝑤 ∈ Σ∗, halts with only 𝑓𝑓(𝑤𝑤) on 
its tape.  (“Outputs 𝑓𝑓(𝑤𝑤)”)

Example 3: 𝑓𝑓 𝑀𝑀,𝑤𝑤  = 𝑀𝑀′  where 𝑀𝑀 is a TM, 𝑤𝑤 is a 
string, and 𝑀𝑀𝑀 is a TM that ignores its input and simulates 
running 𝑀𝑀 on 𝑤𝑤
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Mapping Reductions
Definition: 
Let 𝐴𝐴,𝐵𝐵 ⊆ Σ∗ be languages. We say 𝐴𝐴 is mapping reducible 
to 𝐵𝐵, written

𝐴𝐴 ≤m 𝐵𝐵
if there is a computable function 𝑓𝑓: Σ∗ → Σ∗ such that for 
all strings 𝑤𝑤 ∈ Σ∗, we have 𝑤𝑤 ∈ 𝐴𝐴 ⟺ 𝑓𝑓(𝑤𝑤) ∈ 𝐵𝐵 
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Mapping Reductions
Definition: 
Language 𝐴𝐴 is mapping reducible to language 𝐵𝐵, written

𝐴𝐴 ≤m 𝐵𝐵
if there is a computable function 𝑓𝑓: Σ∗ → Σ∗ such that for 
all strings 𝑤𝑤 ∈ Σ∗, we have 𝑤𝑤 ∈ 𝐴𝐴 ⟺ 𝑓𝑓(𝑤𝑤) ∈ 𝐵𝐵 

If 𝐴𝐴 ≤m 𝐵𝐵, which of the following is true?
a) 𝐴̅𝐴 ≤m 𝐵𝐵
b) 𝐴𝐴 ≤m �𝐵𝐵
c) 𝐴̅𝐴 ≤m �𝐵𝐵
d) �𝐵𝐵 ≤m 𝐴̅𝐴
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Decidability

Theorem: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝐴𝐴 is also 
decidable
Proof: Let 𝑀𝑀 be a decider for 𝐵𝐵 and let 𝑓𝑓: Σ∗ → Σ∗ be a 
mapping reduction from 𝐴𝐴 to 𝐵𝐵. We can construct a 
decider 𝑁𝑁 for 𝐴𝐴 as follows:

On input 𝑤𝑤:
1. Compute 𝑓𝑓(𝑤𝑤)
2. Run 𝑀𝑀 on input 𝑓𝑓(𝑤𝑤)
3. If 𝑀𝑀 accepts, accept.
      If it rejects, reject.
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Undecidability

Theorem: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝐴𝐴 is also 
decidable

Corollary: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐴𝐴 is undecidable, then 𝐵𝐵 is also 
undecidable
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Old Proof: Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2  𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }

Theorem: 𝐸𝐸𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅 
for 𝐸𝐸𝐸𝐸TM. We construct a decider for 𝐸𝐸TM as follows:
On input 𝑀𝑀 :
1. Construct TMs 𝑀𝑀1, 𝑀𝑀2 as follows:
 𝑀𝑀1 = 𝑀𝑀    𝑀𝑀2 =  “On input 𝑥𝑥,

                              1. Ignore 𝑥𝑥 and reject”

2. Run 𝑅𝑅 on input 𝑀𝑀1,𝑀𝑀2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
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New Proof: Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2  𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }

Theorem: 𝐸𝐸TM ≤m 𝐸𝐸𝐸𝐸TM   (Hence 𝐸𝐸𝐸𝐸TM is undecidable)
Proof: The following TM 𝑁𝑁 computes the reduction 𝑓𝑓:

On input 𝑀𝑀 :
1. Construct TMs 𝑀𝑀1, 𝑀𝑀2 as follows:
 𝑀𝑀1 = 𝑀𝑀    𝑀𝑀2 =  “On input 𝑥𝑥,

                              1. Ignore 𝑥𝑥 and reject”
2. Output 𝑀𝑀1,𝑀𝑀2
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Mapping Reductions: Recognizability
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Theorem: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐵𝐵 is recognizable, then 𝐴𝐴 is also 
recognizable

Proof: Let 𝑀𝑀 be a recognizer for 𝐵𝐵 and let 𝑓𝑓: Σ∗ → Σ∗ be a 
mapping reduction from 𝐴𝐴 to 𝐵𝐵. Construct a recognizer 
𝑁𝑁 for 𝐴𝐴 as follows:

On input 𝑤𝑤:
1. Compute 𝑓𝑓(𝑤𝑤)
2. Run 𝑀𝑀 on input 𝑓𝑓(𝑤𝑤)
3. If 𝑀𝑀 accepts, accept.
       If it rejects, reject.



Unrecognizability

Theorem: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐵𝐵 is recognizable, then 𝐴𝐴 is also 
recognizable

Corollary: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐴𝐴 is unrecognizable, then 𝐵𝐵 is 
also unrecognizable

Corollary: If 𝐴𝐴TM ≤m 𝐵𝐵, then 𝐵𝐵 is unrecognizable
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Recognizability and 𝐴𝐴TM 
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Let 𝐿𝐿 be an arbitrary language. Which of the following 
is true?

a) If 𝐿𝐿 ≤m 𝐴𝐴TM, then 𝐿𝐿 is recognizable
b) If 𝐴𝐴TM ≤m 𝐿𝐿, then 𝐿𝐿 is recognizable
c) If 𝐿𝐿 is recognizable, then 𝐿𝐿 ≤m 𝐴𝐴TM
d) If 𝐿𝐿 is recognizable, then 𝐴𝐴TM ≤m 𝐿𝐿

Theorem: 𝐿𝐿 is recognizable if and only if 𝐿𝐿 ≤m 𝐴𝐴TM



Recognizability and 𝐴𝐴TM
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Theorem: 𝐿𝐿 is recognizable if and only if 𝐿𝐿 ≤m 𝐴𝐴TM
Proof:



Other Undecidable 
Problems
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Problems in Language Theory

Apparent dichotomy:
• TMs seem to be able to 

solve problems about the 
power of weaker 
computational models 
(e.g., DFAs)

• TMs can’t solve problems 
about the power of TMs 
themselves

Question: Are there 
undecidable problems that 
do not involve TM 
descriptions?
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𝑨𝑨𝐃𝐃𝐃𝐃𝐃𝐃 
decidable

𝑬𝑬𝐃𝐃𝐃𝐃𝐃𝐃 
decidable

𝑬𝑬𝑬𝑬𝐃𝐃𝐃𝐃𝐃𝐃 
decidable

𝑨𝑨𝐓𝐓𝐓𝐓 
undecidable

𝑬𝑬𝐓𝐓𝐓𝐓 
undecidable

𝑬𝑬𝑬𝑬𝐓𝐓𝐓𝐓 
undecidable



Undecidability of mathematics [Sipser 6.2]
Peano arithmetic: Formalization of mathematical statements 
about the natural numbers, using +,×,≤
Ex: “There exist infinitely many primes”

Theorem [Church, Turing]: 
TPA = 〈𝜑𝜑〉 𝜑𝜑 is a true statement in PA  is undecidable

Corollary [Gödel’s First Incompleteness Theorem]:
There exists a true statement 𝜑𝜑 in Peano arithmetic that is 
not provable
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A simple undecidable problem
Post Correspondence Problem (PCP) [Sipser 5.2]:
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Domino: 𝑎𝑎
𝑎𝑎𝑎𝑎

 . Top and bottom are strings.
Input: Collection of dominos.

𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎

,
𝑎𝑎𝑏𝑏
𝑎𝑎𝑎𝑎𝑎𝑎

,
𝑏𝑏𝑎𝑎
𝑎𝑎𝑎𝑎

,
𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏
𝑏𝑏

Match: List of some of the input dominos (repetitions 
allowed) where top = bottom

𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎

,
𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎

,
𝑏𝑏𝑏𝑏
𝑎𝑎𝑎𝑎

,
𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎

,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑏𝑏

Problem: Does a match exist?   This is undecidable
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