BU CS 332 – Theory of Computation

https://forms.gle/G5t6TLBUsBoA56cL6

Lecture 16:

- More Examples of Reductions
- Mapping Reductions

Mark Bun

March 26, 2025

Sipser Ch 5.1, 5.3

Reading:

Last Time: Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Positive uses: If A reduces to B and B is decidable, then A is also decidable

Ex. E_{DFA} is decidable $\Rightarrow EQ_{\text{DFA}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Ex. *UD* is undecidable $\Rightarrow A_{TM}$ is undecidable

Halting Problem

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}$

Theorem: *HALT*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider *H* for $HALT_{TM}$. We construct a decider for *V* for A_{TM} as follows:

On input $\langle M, w \rangle$:

- 1. Run *H* on input $\langle M, w \rangle$
- 2. If *H* rejects, reject
- 3. If *H* accepts, run *M* on *w*
- If *M* accepts, accept
 Otherwise, reject.

Halting Problem

Computational problem: Given a program (TM) and input *w*, does that program halt on input *w*?

- A central problem in formal verification
- Dealing with undecidability in practice:
 - Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
 - Restrict to a "non-Turing-complete" subclass of programs for which halting is decidable
 - Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting

Emptiness testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: *E*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider V for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Run *R* on input ???

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Emptiness testing for TMs

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: *E*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider V for A_{TM} as follows:

On input $\langle M, w \rangle$:

2. Run *R* on input $\langle N \rangle$

1. Construct a TM *N* as follows:

What do we want out of machine *N*?

- a) L(N) is empty iff M accepts w
- b) L(N) is non-empty iff M accepts w
- c) L(M) is empty iff N accepts w
- d) L(M) is non-empty iff N accepts w

This is a reduction from A_{TM} to E_{TM}

3. If *R*

, accept. Otherwise, reject

Emptiness testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: *E*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider V for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Construct a TM *N* as follows:

"On input x:

Run *M* on *w* and output the result."

2. Run *R* on input $\langle N \rangle$

3. If *R* rejects, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for E_{TM} as follows:

On input $\langle M \rangle$:

1. Construct TMs N_1 , N_2 as follows: $N_1 = N_2 =$

2. Run *R* on input $\langle N_1, N_2 \rangle$ 3. If *R* accepts, accept. Otherwise, reject.

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

Equality Testing for TMs

What do we want out of the machines N_1, N_2 ? a) $L(M) = \emptyset$ iff $N_1 = N_2$ b) $L(M) = \emptyset$ iff $L(N_1) = L(N_2)$ c) $L(M) = \emptyset$ iff $N_1 \neq N_2$ d) $L(M) = \emptyset$ iff $L(N_1) \neq L(N_2)$

On input $\langle M \rangle$:

1. Construct TMs N_1 , N_2 as follows: $N_1 = N_2 =$

2. Run *R* on input $\langle N_1, N_2 \rangle$ 3. If *R* accepts, accept. Otherwise, reject.

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M \rangle$:

- 1. Construct TMs N_1 , N_2 as follows:
 - N_1 = "On input x: $N_2 = M$ reject"

2. Run *R* on input $\langle N_1, N_2 \rangle$ 3. If *R* accepts, accept. Otherwise, reject.

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

Regular language testing for TMs

 $REG_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: *REG*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for REG_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Construct a TM *N* as follows:

2. Run *R* on input $\langle N \rangle$

3. If *R* accepts, accept. Otherwise, reject

This is a reduction from A_{TM} to REG_{TM}

Regular language testing for TMs

 $REG_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: *REG*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for REG_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Construct a TM *N* as follows:

N = "On input x,

1. If $x \in \{0^n 1^n \mid n \ge 0\}$, accept

2. Run TM M on input w

3. If *M* accepts, accept. Otherwise, reject."

2. Run *R* on input $\langle N \rangle$

3. If *R* accepts, accept. Otherwise, reject

This is a reduction from A_{TM} to REG_{TM}

Mapping Reductions

What's wrong with the following "proof"?

Bogus "Theorem": *A*_{TM} is not Turing-recognizable

Bogus "Proof": Let *R* be an alleged recognizer for A_{TM} . We construct a recognizer *S* for unrecognizable language A_{TM} :

On input $\langle M, w \rangle$:

- 1. Run *R* on input $\langle M, w \rangle$
- 2. If *R* accepts, reject. If *R* rejects, accept.

This sure looks like a reduction from $\overline{A_{TM}}$ to A_{TM}

Mapping Reductions: Motivation

- 1. How do we formalize the notion of a reduction?
- 2. How do we use reductions to show that languages are unrecognizable?
- 3. How do we protect ourselves from accidentally "proving" bogus statements about recognizability?

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Example 1: f(w) = sort(w)

Example 2:
$$f(\langle x, y \rangle) = x + y$$

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Example 3: $f(\langle M, w \rangle) = \langle M' \rangle$ where *M* is a TM, *w* is a string, and *M'* is a TM that ignores its input and simulates running *M* on *w*

Mapping Reductions <u>Definition:</u>

Let $A, B \subseteq \Sigma^*$ be languages. We say A is mapping reducible to B, written

$$A \leq_{\mathrm{m}} B$$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \Leftrightarrow f(w) \in B$

Mapping Reductions

Definition:

Language A is mapping reducible to language B, written $A \leq_{m} B$ if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for

all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

If $A \leq_{m} B$, which of the following is true? a) $\overline{A} \leq_{m} B$ b) $A \leq_{m} \overline{B}$ c) $\overline{A} \leq_{m} \overline{B}$ d) $\overline{B} \leq_{m} \overline{A}$

Decidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Proof: Let *M* be a decider for *B* and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from *A* to *B*. We can construct a decider *N* for *A* as follows:

On input *w*:

- 1. Compute f(w)
- 2. Run M on input f(w)
- 3. If *M* accepts, accept. If it rejects, reject.

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable

Old Proof: Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for E_{TM} as follows:

On input $\langle M \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = M$$
 $M_2 = "On input x,$
1. Ignore x and reject"

2. Run *R* on input $\langle M_1, M_2 \rangle$

3. If *R* accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}

New Proof: Equality Testing for TMs

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: $E_{TM} \leq_m EQ_{TM}$ (Hence EQ_{TM} is undecidable) Proof: The following TM N computes the reduction f:

On input $\langle M \rangle$: 1. Construct TMs M_1 , M_2 as follows: $M_1 = M$ $M_2 = "On input x,$ 1. Ignore x and reject"

2. Output $\langle M_1, M_2 \rangle$

Mapping Reductions: Recognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Proof: Let *M* be a recognizer for *B* and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from *A* to *B*. Construct a recognizer *N* for *A* as follows:

On input *w*:

- 1. Compute f(w)
- 2. Run M on input f(w)
- 3. If *M* accepts, accept.
 - If it rejects, reject.

Unrecognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is also unrecognizable

Corollary: If $\overline{A_{TM}} \leq_m B$, then B is unrecognizable

Let *L* be an arbitrary language. Which of the following is true?

- a) If $L \leq_{m} A_{TM}$, then L is recognizable
- b) If $A_{TM} \leq_m L$, then L is recognizable
- c) If L is recognizable, then $L \leq_{m} A_{TM}$
- d) If *L* is recognizable, then $A_{\text{TM}} \leq_{\text{m}} L$

Theorem: *L* is recognizable *if and only* if $L \leq_m A_{TM}$

Recognizability and A_{TM}

Theorem: *L* is recognizable *if and only if* $L \leq_m A_{TM}$ **Proof**:

Other Undecidable Problems

Problems in Language Theory

Apparent dichotomy:

- TMs seem to be able to solve problems about the power of weaker computational models (e.g., DFAs)
- TMs can't solve problems about the power of TMs themselves

Question: Are there undecidable problems that do not involve TM descriptions?

Undecidability of mathematics [Sipser 6.2] Peano arithmetic: Formalization of mathematical statements about the natural numbers, using $+, \times, \leq$

Ex: "There exist infinitely many primes"

Theorem [Church, Turing]:

TPA = { $\langle \varphi \rangle$ | φ is a true statement in PA } is undecidable

Corollary [Gödel's First Incompleteness Theorem]:

There exists a true statement φ in Peano arithmetic that is not provable

A simple undecidable problem <u>Post Correspondence Problem (PCP) [Sipser 5.2]</u>: Domino: $\left[\frac{a}{ab}\right]$. Top and bottom are strings. Input: Collection of dominos. $\left[\frac{aa}{aba}\right], \left[\frac{ab}{aba}\right], \left[\frac{ba}{aa}\right], \left[\frac{abab}{b}\right]$

Match: List of some of the input dominos (repetitions allowed) where top = bottom

$$\begin{bmatrix} ab \\ aba \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} ba \\ aa \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} abab \\ b \end{bmatrix}$$

Problem: Does a match exist?

This is undecidable

CS332 - Theory of Computation