BU CS 332 – Theory of Computation

https://forms.gle/ziHz9k95spAvq9NK6

Lecture 17:

 Mapping Reduction Examples Reading:

Sipser Ch 5.3, 7.1

Asymptotic Notation

Mark Bun

March 31, 2025

Mapping Reductions: Motivation

- 1. How do we formalize the notion of a reduction?
- 2. How do we use reductions to show that languages are unrecognizable?
- 3. How do we protect ourselves from accidentally "proving" bogus statements about recognizability?

Mapping Reductions

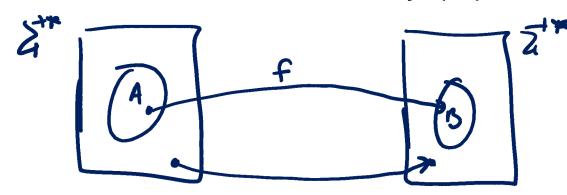
A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Definition:

Let $A, B \subseteq \Sigma^*$ be languages. We say A is mapping reducible to B, written

 $A \leq_{\mathrm{m}} B$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \Leftrightarrow f(w) \in B$



Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable

New Proof: Equality Testing for TMs $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ **Theorem:** $E_{TM} \leq_m EQ_{TM}$ (Hence EQ_{TM} is undecidable) Proof: The following TM N computes the reduction f: $Fin_{\mathcal{F}} \leq \langle M \rangle \mid TM M$ requires ϕ^3 On input $\langle M \rangle$: 1. Construct TMs M_1 , M_2 as follows: $M_1 = M$ M_2 = "On input x, 1. Ignore x and reject" 2. Output $\langle M_1, M_2 \rangle$ Proof of conechess for relation f.

• JF $\langle M \rangle \in ETM$ $L(M_1) = L(M) = \phi$ $L(M_2) = \phi \implies \langle M_1, M_2 \rangle \in EQ_{TM}$

• IF
$$(M) \notin E_{TM}$$

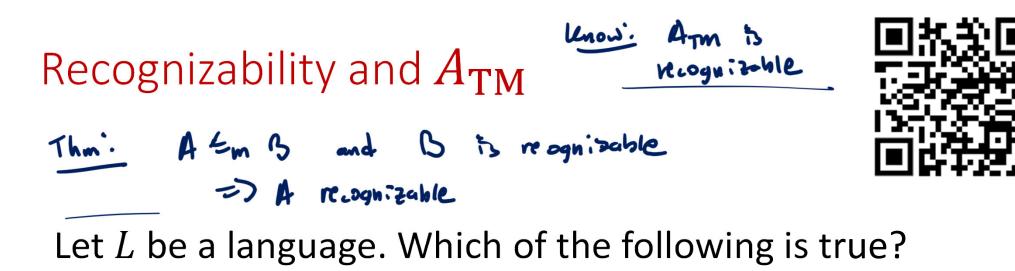
 $L(M_1) = L(M) \notin \phi$
 $L(M_2) = \phi = (M_1, M_2) \notin E_{QTM}$

Unrecognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Corollary: If $A \leq_m B$ and <u>A is unrecognizable</u>, then <u>B</u> is also unrecognizable

Corollary: If
$$A_{TM} \leq_m B$$
, then B is unrecognizable
 $\overline{A_{:m}} = \frac{2}{3} (M_{s} \sqrt{7}) TM M does not a capt $\sqrt{3}$
(or dlary: If $A_{TM} \leq_m \overline{5}$ then to is unrecognizable$



a) If $L \leq_{m} A_{TM}$, then L is recognizable b) If $A_{TM} \leq_{m} L$, then L is recognizable c) If L is recognizable, then $L \leq_{m} A_{TM}$ d) If L is recognizable, then $A_{TM} \leq_{m} L$

Theorem: *L* is recognizable *if and only* if $L \leq_m A_{TM}$

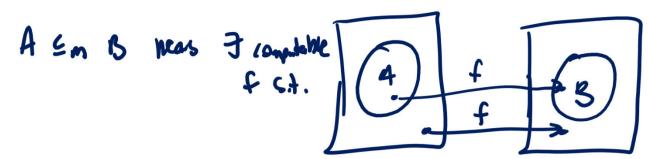
Recognizability and $A_{\rm TM}$

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ Proof: (=) If $L \leq_m A_{TM}$, the combine () A_{TM} is requiredule () $A \leq_m B_3$ is recognizable () $H \leq_m B_3$ is recognizedule

Example: Another reduction to EQ_{TM} $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem: $A_{TM} \leq_m EQ_{TM}$ $| A_{TM} = \{\langle M, \Psi \rangle \}$ TM = M are WProof: The following TM N computes the reduction f:

What should the inputs and outputs to f be?

a) f should take as input a pair $\langle M_1, M_2 \rangle$ and output a pair $\langle M, w \rangle$ b) f should take as input a pair $\langle M, w \rangle$ and output a pair $\langle M_1, M_2 \rangle$ c) f should take as input a pair $\langle M_1, M_2 \rangle$ and either accept or reject d) f should take as input a pair $\langle M, w \rangle$ and either accept or reject



Example: Another reduction to EQ_{TM}

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$

Proof: The following TM computes the reduction f:Wert: M and $J \Rightarrow L(M_1) = L(M_2) \quad (= z^*)$ M day of each $J \Rightarrow L(M_2) \neq L(M_2) \quad (= z^*)$ On input $\langle M, W \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = \text{"On input } x, \qquad M_2 = \text{"On input } x, \\ 1. \quad \text{Igner } x \\ 2. \quad \text{for } M \text{ an apple } u \text{"}$$

2. Output $\langle \underline{M}_1, \underline{M}_2 \rangle$

3/31/2025

 $L(M_{2}) = Z''$

Consequences of $A_{TM} \leq_m EQ_{TM}$

1. Since A_{TM} is undecidable, EQ_{TM} is also undecidable

2. $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$ implies $\overline{A_{\text{TM}}} \leq_{\text{m}} \overline{EQ_{\text{TM}}}$ Since $\overline{A_{\text{TM}}}$ is unrecognizable, $\overline{EQ_{\text{TM}}}$ is unrecognizable

EQ_{TM} itself is also unrecognizable $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: $A_{TM} \leq_m \mathcal{L}(TM)$ (reference) Proof: The following TM computes the reduction: $(M, J) \notin A_m =)$ $L(M_2) =$ 1. Construct TMs M_1 , M_2 as follows: M_1 = "On input x, M_2 = "On input x, 1. Ignore x and reject" Ignore x 1. 2. Run *M* on input *w* L(M) = { if M acents w L(M) = { b if M does not acent w 3. If *M* accepts, accept. SF M mise, reject." 2. Output $\langle M_1, M_2 \rangle$

Where we are in CS 332

Automata	Computability	Complexity
----------	---------------	------------

Previous unit: Computability theory What problems can / can't computers solve?

Final unit: Complexity theory What problems can / can't computers solve under constraints on their computational resources?

Time and space complexity

Today: Start answering the basic questions

- 1. How do we measure complexity? (as in CS 330)
- 2. Asymptotic notation (as in CS 330)
- 3. How robust is the TM model when we care about measuring complexity?
- 4. How do we mathematically capture our intuitive notion of "efficient algorithms"?

Time and space complexity

Time complexity of a TM = Running time of an algorithm

= Max number of steps as a <u>function</u> of input length n

Space complexity of a TM = Memory usage of algorithm = Max number of tape cells as a <u>function</u> of input length n

Review of asymptotic notation *O*-notation (upper bounds)

f(n) = O(g(n)) means:There exist constants $c > 0, n_0 > 0$ such that $f(n) \le cg(n)$ for every $n \ge n_0$

Example:
$$2n^{2} + 12 = O(n^{3})$$
 ($c = 3, n_{0} = 4$)
 $2n^{2} + 12 \leq 2n^{2} + n^{2}$ for all $n > n_{0} = 4$
(dn_{0}^{2} , $n > 4 = 3n^{2} > 16 \ge 12$)
 $\leq 3n^{2}$

(-g(n)

f(n)

Properties of asymptotic notation:

Transitive:

$$f(n) = O(g(n)) \text{ and } g(n) = O(h(n)) \text{ means } f(n) = O(h(n))$$

Ex. $10n^2 + 17 = O(n^2)$, $n^2 = O(n^3) \implies 10n^2 + 7 = O(n^3)$

Not reflexive:

f(n) = O(g(n)) does not mean g(n) = O(f(n))

Example: $f(n) = 2n^2$, $g(n) = n^3$ $2n^2 = O(n^3)$ but $n^3 \neq O(n^2)$

Alternative (better) notation: $f(n) \in O(g(n)) = \frac{2}{n} \ln \left| \frac{1}{2} c_{3} + \frac{1}{2} c_{4} \right|$

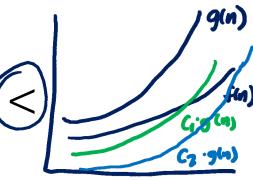
Examples

• $10^6 n^3 + 2n^2 - n + 10 =$ $O(n^{3})$ = O(n²⁷) [also fre, but not tight] $\sqrt{n} + \log n = O(\pi) = O(n^{n}) \qquad \begin{bmatrix} c=2 \\ n_0=2 \end{bmatrix} \qquad eqn \le \ln \sqrt{n}$ W lags grow nor slarly than all polyconsuls • $n(\log n + \sqrt{n}) = n \log n + n \ln = O(n \ln) = O(n^{2/2})$

Little-oh

If *O*-notation is like \leq , then *o*-notation is like \leq

f(n) = o(g(n)) means:



For every constant c > 0, there exists $n_0 > 0$ such that $f(n) \leq cq(n)$ for every $n \geq n_0$ 457 V C 70 3 4070 51. f(h) 5C $\frac{f(v)}{u(a)} = 0$ Example: $2n^2 + 12 = o(n^3)$ $(n_0 = \max\{4/c, 3\})$ let c70 be arbitrary $\frac{2n^2+12}{2} = \frac{2}{2} + \frac{12}{2}$ No= Max 24/c, 33 Close 2n²+12 5 2n²+n² 4 133 $\leq (cn)n^2 \forall n^2 \frac{y}{c}$ = cn^3

True facts about asymptotic expressions

Which of the following statements is true about the function $f(n) = 2^n$?

a) $f(n) = O(3^n)$ $\forall n \ 2^n \leq 3^n$

b)
$$f(n) = o(3^n)$$
 $\frac{2^n}{3^n} = (\frac{2}{3})^n \rightarrow 0$

c)
$$f(n) = O(n^2)$$
 } Exponentials gass faster the polynomials
d) $n^2 = O(f(n))$

Asymptotic notation within expressions

Asymptotic notation within an expression is shorthand for "there exists a function satisfying the statement"

Examples:

the exits some f(n)= O(1) s.t. the expension is ifin) • $n^{O(1)}$ Mens E in for some consont C E_{2} , n^{2} , n^{2} , n^{2} , n^{2} , n^{0} • $n^2 + O(n)$ nears n²+f(n) for some f(n) = O(n) • $(1 + o(1))n = n + o(0) \cdot n$ f(n) f(n) = o(n)

FAABs: Frequently asked asymptotic bounds

- Polynomials. $a_0 + a_1n + \dots + a_dn^d$ is $O(n^d)$ if $a_d > 0$
- Logarithms. $\log_a n = O(\log_b n)$ for all constants a, b > 0 $\log_a(n) = \frac{\log_b n}{\log_b n}$ For every c > 0, $\log n = o(n^c)$
- Exponentials. For all b > 1 and all d > 0, $n^d = o(b^n)$
- Factorial. $n! = n(n-1) \cdots 1$ By Stirling's formula, $n! = (\sqrt{2\pi n}) \left(\frac{n}{e}\right)^n (1 + o(1)) = 2^{O(n \log n)}$