
BU CS 332 – Theory of Computation

Lecture 17:
• Mapping Reduction

Examples
• Asymptotic Notation

Reading:
Sipser Ch 5.3, 7.1

Mark Bun
March 31, 2025

https://forms.gle/ziHz9k95spAvq9NK6

https://forms.gle/ziHz9k95spAvq9NK6

Mapping Reductions: Motivation

1. How do we formalize the notion of a reduction?
2. How do we use reductions to show that languages are

unrecognizable?
3. How do we protect ourselves from accidentally

“proving” bogus statements about recognizability?

3/31/2025 CS332 - Theory of Computation 2

Mapping Reductions
Definition:
A function 𝑓𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀𝑀 which,
given as input any 𝑤𝑤 ∈ Σ∗, halts with only 𝑓𝑓(𝑤𝑤) on its tape.
(“Outputs 𝑓𝑓(𝑤𝑤)”)

Definition:
Let 𝐴𝐴,𝐵𝐵 ⊆ Σ∗ be languages. We say 𝐴𝐴 is mapping reducible to
𝐵𝐵, written

𝐴𝐴 ≤m 𝐵𝐵
if there is a computable function 𝑓𝑓: Σ∗ → Σ∗ such that for all
strings 𝑤𝑤 ∈ Σ∗, we have 𝑤𝑤 ∈ 𝐴𝐴 ⟺ 𝑓𝑓(𝑤𝑤) ∈ 𝐵𝐵

3/31/2025 CS332 - Theory of Computation 3

Undecidability

Theorem: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝐴𝐴 is also
decidable

Corollary: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐴𝐴 is undecidable, then 𝐵𝐵 is also
undecidable

3/31/2025 CS332 - Theory of Computation 4

New Proof: Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2 𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }

Theorem: 𝐸𝐸TM ≤m 𝐸𝐸𝐸𝐸TM (Hence 𝐸𝐸𝐸𝐸TM is undecidable)
Proof: The following TM 𝑁𝑁 computes the reduction 𝑓𝑓:

On input 𝑀𝑀 :
1. Construct TMs 𝑀𝑀1, 𝑀𝑀2 as follows:
 𝑀𝑀1 = 𝑀𝑀 𝑀𝑀2 = “On input 𝑥𝑥,

 1. Ignore 𝑥𝑥 and reject”
2. Output 𝑀𝑀1,𝑀𝑀2

3/31/2025 CS332 - Theory of Computation 5

Unrecognizability

Theorem: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐵𝐵 is recognizable, then 𝐴𝐴 is also
recognizable

Corollary: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐴𝐴 is unrecognizable, then 𝐵𝐵 is
also unrecognizable

Corollary: If 𝐴𝐴TM ≤m 𝐵𝐵, then 𝐵𝐵 is unrecognizable

3/31/2025 CS332 - Theory of Computation 6

Recognizability and 𝐴𝐴TM

3/31/2025 CS332 - Theory of Computation 7

Let 𝐿𝐿 be a language. Which of the following is true?

a) If 𝐿𝐿 ≤m 𝐴𝐴TM, then 𝐿𝐿 is recognizable
b) If 𝐴𝐴TM ≤m 𝐿𝐿, then 𝐿𝐿 is recognizable
c) If 𝐿𝐿 is recognizable, then 𝐿𝐿 ≤m 𝐴𝐴TM
d) If 𝐿𝐿 is recognizable, then 𝐴𝐴TM ≤m 𝐿𝐿

Theorem: 𝐿𝐿 is recognizable if and only if 𝐿𝐿 ≤m 𝐴𝐴TM

Recognizability and 𝐴𝐴TM

3/31/2025 CS332 - Theory of Computation 8

Theorem: 𝐿𝐿 is recognizable if and only if 𝐿𝐿 ≤m 𝐴𝐴TM
Proof:

Example: Another reduction to 𝐸𝐸𝐸𝐸TM

3/31/2025 CS332 - Theory of Computation 9

𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2 𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }
Theorem: 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM
Proof: The following TM 𝑁𝑁 computes the reduction 𝑓𝑓:

What should the inputs and outputs to 𝑓𝑓 be?

a) 𝑓𝑓 should take as input a pair 𝑀𝑀1,𝑀𝑀2 and output a pair 〈𝑀𝑀,𝑤𝑤〉
b) 𝑓𝑓 should take as input a pair 〈𝑀𝑀,𝑤𝑤〉 and output a pair 𝑀𝑀1,𝑀𝑀2
c) 𝑓𝑓 should take as input a pair 𝑀𝑀1,𝑀𝑀2 and either accept or reject
d) 𝑓𝑓 should take as input a pair 〈𝑀𝑀,𝑤𝑤〉 and either accept or reject

Example: Another reduction to 𝐸𝐸𝐸𝐸TM

3/31/2025 CS332 - Theory of Computation 10

𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2 𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }
Theorem: 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM
Proof: The following TM computes the reduction 𝑓𝑓:

On input 𝑀𝑀,𝑤𝑤 :
1. Construct TMs 𝑀𝑀1, 𝑀𝑀2 as follows:
 𝑀𝑀1 = “On input 𝑥𝑥, 𝑀𝑀2 = “On input 𝑥𝑥,

2. Output 𝑀𝑀1,𝑀𝑀2

Consequences of 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM

1. Since 𝐴𝐴TM is undecidable, 𝐸𝐸𝐸𝐸TM is also undecidable

2. 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM implies 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM
 Since 𝐴𝐴TM is unrecognizable, 𝐸𝐸𝐸𝐸TM is unrecognizable

3/31/2025 CS332 - Theory of Computation 11

𝐸𝐸𝐸𝐸TM itself is also unrecognizable

3/31/2025 CS332 - Theory of Computation 12

𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2 𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }
Theorem: 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM (Hence 𝐸𝐸𝐸𝐸TM is unrecognizable)
Proof: The following TM computes the reduction:

On input 𝑀𝑀,𝑤𝑤 :
1. Construct TMs 𝑀𝑀1, 𝑀𝑀2 as follows:
 𝑀𝑀1 = “On input 𝑥𝑥, 𝑀𝑀2 = “On input 𝑥𝑥,

1. Ignore 𝑥𝑥 1. Ignore 𝑥𝑥 and reject”
2. Run 𝑀𝑀 on input 𝑤𝑤
3. If 𝑀𝑀 accepts, accept.
 Otherwise, reject.”

2. Output 𝑀𝑀1,𝑀𝑀2

Where we are in CS 332

3/31/2025 CS332 - Theory of Computation 13

Automata Computability Complexity

Previous unit: Computability theory
What problems can / can’t computers solve?

Final unit: Complexity theory
What problems can / can’t computers solve under
 constraints on their computational resources?

Time and space complexity
Today: Start answering the basic questions

1. How do we measure complexity? (as in CS 330)

2. Asymptotic notation (as in CS 330)

3. How robust is the TM model when we care about
measuring complexity?

4. How do we mathematically capture our intuitive
notion of “efficient algorithms”?

3/31/2025 CS332 - Theory of Computation 14

Time and space complexity
Time complexity of a TM = Running time of an algorithm
 = Max number of steps as a function of input length 𝑛𝑛

Space complexity of a TM = Memory usage of algorithm
= Max number of tape cells as a function of input length 𝑛𝑛

3/31/2025 CS332 - Theory of Computation 15

Review of asymptotic notation
𝑂𝑂-notation (upper bounds)

𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛) means:
 There exist constants 𝑐𝑐 > 0,𝑛𝑛0 > 0 such that
 𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐𝑔𝑔 𝑛𝑛 for every 𝑛𝑛 ≥ 𝑛𝑛0

Example: 2𝑛𝑛2 + 12 = 𝑂𝑂(𝑛𝑛3) (𝑐𝑐 = 3, 𝑛𝑛0 = 4)

3/31/2025 CS332 - Theory of Computation 16

Properties of asymptotic notation:
Transitive:
 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛) and 𝑔𝑔 𝑛𝑛 = 𝑂𝑂(ℎ 𝑛𝑛) means 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(ℎ 𝑛𝑛)

Not reflexive:
 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛) does not mean 𝑔𝑔 𝑛𝑛 = 𝑂𝑂(𝑓𝑓 𝑛𝑛)

Example: 𝑓𝑓 𝑛𝑛 = 2𝑛𝑛2, 𝑔𝑔 𝑛𝑛 = 𝑛𝑛3

Alternative (better) notation: 𝑓𝑓 𝑛𝑛 ∈ 𝑂𝑂(𝑔𝑔 𝑛𝑛)

3/31/2025 CS332 - Theory of Computation 17

Examples

3/31/2025 CS332 - Theory of Computation 18

• 106 𝑛𝑛3 + 2𝑛𝑛2 − 𝑛𝑛 + 10 =

• 𝑛𝑛 + log𝑛𝑛 =

• 𝑛𝑛 (log𝑛𝑛 + 𝑛𝑛) =

Little-oh

3/31/2025 CS332 - Theory of Computation 19

If 𝑂𝑂-notation is like ≤, then 𝑜𝑜-notation is like <

Example: 2𝑛𝑛2 + 12 = 𝑜𝑜(𝑛𝑛3) (𝑛𝑛0 = max{4/𝑐𝑐, 3})

𝑓𝑓 𝑛𝑛 = 𝑜𝑜(𝑔𝑔 𝑛𝑛) means:
 For every constant 𝑐𝑐 > 0, there exists 𝑛𝑛0 > 0 such that
 𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐𝑔𝑔 𝑛𝑛 for every 𝑛𝑛 ≥ 𝑛𝑛0

True facts about asymptotic expressions
Which of the following statements is true about the
function 𝑓𝑓 𝑛𝑛 = 2𝑛𝑛?

a) 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 3𝑛𝑛

b) 𝑓𝑓 𝑛𝑛 = 𝑜𝑜 3𝑛𝑛

c) 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛2

d) 𝑛𝑛2 = 𝑂𝑂(𝑓𝑓 𝑛𝑛)

3/31/2025 CS332 - Theory of Computation 20

Asymptotic notation within expressions
Asymptotic notation within an expression is shorthand for
“there exists a function satisfying the statement”
Examples:
• 𝑛𝑛𝑂𝑂(1)

• 𝑛𝑛2 + 𝑂𝑂 𝑛𝑛

• 1 + 𝑜𝑜 1 𝑛𝑛

3/31/2025 CS332 - Theory of Computation 21

FAABs: Frequently asked asymptotic bounds

3/31/2025 CS332 - Theory of Computation 22

• Polynomials. 𝑎𝑎0 + 𝑎𝑎1𝑛𝑛 + … + 𝑎𝑎𝑑𝑑𝑛𝑛𝑑𝑑 is 𝑂𝑂(𝑛𝑛𝑑𝑑) if 𝑎𝑎𝑑𝑑 > 0
• Logarithms. log 𝑎𝑎

𝑛𝑛 = 𝑂𝑂(log 𝑏𝑏
𝑛𝑛) for all constants 𝑎𝑎, 𝑏𝑏 > 0

 For every 𝑐𝑐 > 0, log𝑛𝑛 = 𝑜𝑜(𝑛𝑛𝑐𝑐)

• Exponentials. For all 𝑏𝑏 > 1 and all 𝑑𝑑 > 0, 𝑛𝑛𝑑𝑑 = 𝑜𝑜(𝑏𝑏𝑛𝑛)

• Factorial. 𝑛𝑛! = 𝑛𝑛 𝑛𝑛 − 1 ⋯1
 By Stirling’s formula,

𝑛𝑛! = 2𝜋𝜋𝑛𝑛
𝑛𝑛
𝑒𝑒

𝑛𝑛
1 + 𝑜𝑜 1 = 2𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

	BU CS 332 – Theory of Computation
	Mapping Reductions: Motivation
	Mapping Reductions
	Undecidability
	New Proof: Equality Testing for TMs
	Unrecognizability
	Recognizability and 𝐴 TM
	Recognizability and 𝐴 TM
	Example: Another reduction to 𝐸𝑄 TM
	Example: Another reduction to 𝐸𝑄 TM
	Consequences of 𝐴 TM ≤ m 𝐸𝑄 TM
	 𝐸𝑄 TM itself is also unrecognizable
	Where we are in CS 332
	Time and space complexity
	Time and space complexity
	Review of asymptotic notation
	Properties of asymptotic notation:
	Examples
	Little-oh
	True facts about asymptotic expressions
	Asymptotic notation within expressions
	FAABs: Frequently asked asymptotic bounds

