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Mapping Reductions: Motivation

1. How do we formalize the notion of a reduction?
2. How do we use reductions to show that languages are 

unrecognizable?
3. How do we protect ourselves from accidentally 

“proving” bogus statements about recognizability?
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Mapping Reductions
Definition: 
A function 𝑓𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀𝑀 which, 
given as input any 𝑤𝑤 ∈ Σ∗, halts with only 𝑓𝑓(𝑤𝑤) on its tape.  
(“Outputs 𝑓𝑓(𝑤𝑤)”)

Definition: 
Let 𝐴𝐴,𝐵𝐵 ⊆ Σ∗ be languages. We say 𝐴𝐴 is mapping reducible to 
𝐵𝐵, written

𝐴𝐴 ≤m 𝐵𝐵
if there is a computable function 𝑓𝑓: Σ∗ → Σ∗ such that for all 
strings 𝑤𝑤 ∈ Σ∗, we have 𝑤𝑤 ∈ 𝐴𝐴 ⟺ 𝑓𝑓(𝑤𝑤) ∈ 𝐵𝐵 
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Undecidability

Theorem: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝐴𝐴 is also 
decidable

Corollary: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐴𝐴 is undecidable, then 𝐵𝐵 is also 
undecidable
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New Proof: Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2  𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }

Theorem: 𝐸𝐸TM ≤m 𝐸𝐸𝐸𝐸TM   (Hence 𝐸𝐸𝐸𝐸TM is undecidable)
Proof: The following TM 𝑁𝑁 computes the reduction 𝑓𝑓:

On input 𝑀𝑀 :
1. Construct TMs 𝑀𝑀1, 𝑀𝑀2 as follows:
 𝑀𝑀1 = 𝑀𝑀    𝑀𝑀2 =  “On input 𝑥𝑥,

                              1. Ignore 𝑥𝑥 and reject”
2. Output 𝑀𝑀1,𝑀𝑀2
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Unrecognizability

Theorem: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐵𝐵 is recognizable, then 𝐴𝐴 is also 
recognizable

Corollary: If 𝐴𝐴 ≤m 𝐵𝐵 and 𝐴𝐴 is unrecognizable, then 𝐵𝐵 is 
also unrecognizable

Corollary: If 𝐴𝐴TM ≤m 𝐵𝐵, then 𝐵𝐵 is unrecognizable
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Recognizability and 𝐴𝐴TM 
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Let 𝐿𝐿 be a language. Which of the following is true?

a) If 𝐿𝐿 ≤m 𝐴𝐴TM, then 𝐿𝐿 is recognizable
b) If 𝐴𝐴TM ≤m 𝐿𝐿, then 𝐿𝐿 is recognizable
c) If 𝐿𝐿 is recognizable, then 𝐿𝐿 ≤m 𝐴𝐴TM
d) If 𝐿𝐿 is recognizable, then 𝐴𝐴TM ≤m 𝐿𝐿

Theorem: 𝐿𝐿 is recognizable if and only if 𝐿𝐿 ≤m 𝐴𝐴TM



Recognizability and 𝐴𝐴TM
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Theorem: 𝐿𝐿 is recognizable if and only if 𝐿𝐿 ≤m 𝐴𝐴TM
Proof:



Example: Another reduction to 𝐸𝐸𝐸𝐸TM
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𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2  𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }
Theorem: 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM
Proof: The following TM 𝑁𝑁 computes the reduction 𝑓𝑓:

What should the inputs and outputs to 𝑓𝑓 be?

a)  𝑓𝑓 should take as input a pair 𝑀𝑀1,𝑀𝑀2  and output a pair 〈𝑀𝑀,𝑤𝑤〉 
b)  𝑓𝑓 should take as input a pair 〈𝑀𝑀,𝑤𝑤〉 and output a pair 𝑀𝑀1,𝑀𝑀2
c)  𝑓𝑓 should take as input a pair 𝑀𝑀1,𝑀𝑀2  and either accept or reject 
d)  𝑓𝑓 should take as input a pair 〈𝑀𝑀,𝑤𝑤〉 and either accept or reject



Example: Another reduction to 𝐸𝐸𝐸𝐸TM
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𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2  𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }
Theorem: 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM
Proof: The following TM computes the reduction 𝑓𝑓:

On input 𝑀𝑀,𝑤𝑤 :
1. Construct TMs 𝑀𝑀1, 𝑀𝑀2 as follows:
 𝑀𝑀1 = “On input 𝑥𝑥,   𝑀𝑀2 =  “On input 𝑥𝑥,

2. Output 𝑀𝑀1,𝑀𝑀2



Consequences of 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM

1. Since 𝐴𝐴TM is undecidable, 𝐸𝐸𝐸𝐸TM is also undecidable

2.  𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM implies 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM
       Since 𝐴𝐴TM is unrecognizable, 𝐸𝐸𝐸𝐸TM is unrecognizable
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𝐸𝐸𝐸𝐸TM itself is also unrecognizable
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𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2  𝑀𝑀1,𝑀𝑀2 are TMs and 𝐿𝐿 𝑀𝑀1 = 𝐿𝐿 𝑀𝑀2 }
Theorem: 𝐴𝐴TM ≤m 𝐸𝐸𝐸𝐸TM  (Hence 𝐸𝐸𝐸𝐸TM is unrecognizable)
Proof: The following TM computes the reduction:

On input 𝑀𝑀,𝑤𝑤 :
1. Construct TMs 𝑀𝑀1, 𝑀𝑀2 as follows:
 𝑀𝑀1 = “On input 𝑥𝑥,   𝑀𝑀2 =  “On input 𝑥𝑥,

1. Ignore 𝑥𝑥      1. Ignore 𝑥𝑥 and reject”
2. Run 𝑀𝑀 on input 𝑤𝑤
3. If 𝑀𝑀 accepts, accept. 
  Otherwise, reject.”

2. Output 𝑀𝑀1,𝑀𝑀2



Where we are in CS 332
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Automata Computability Complexity

Previous unit: Computability theory
What problems can / can’t computers solve?

Final unit: Complexity theory
What problems can / can’t computers solve under 
      constraints on their computational resources?



Time and space complexity
Today: Start answering the basic questions

1. How do we measure complexity? (as in CS 330)

2. Asymptotic notation (as in CS 330)

3. How robust is the TM model when we care about 
measuring complexity?

4. How do we mathematically capture our intuitive 
notion of “efficient algorithms”?
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Time and space complexity
Time complexity of a TM = Running time of an algorithm
 = Max number of steps as a function of input length 𝑛𝑛

Space complexity of a TM = Memory usage of algorithm
= Max number of tape cells as a function of input length 𝑛𝑛 
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Review of asymptotic notation
𝑂𝑂-notation (upper bounds)

𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛 ) means:
 There exist constants 𝑐𝑐 > 0,𝑛𝑛0 > 0 such that 
            𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐𝑔𝑔 𝑛𝑛  for every 𝑛𝑛 ≥ 𝑛𝑛0

Example:     2𝑛𝑛2 + 12 = 𝑂𝑂(𝑛𝑛3)  (𝑐𝑐 = 3, 𝑛𝑛0 = 4) 
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Properties of asymptotic notation:
Transitive:
    𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛 ) and 𝑔𝑔 𝑛𝑛 = 𝑂𝑂(ℎ 𝑛𝑛 ) means 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(ℎ 𝑛𝑛 )

Not reflexive: 
 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛 ) does not mean 𝑔𝑔 𝑛𝑛 = 𝑂𝑂(𝑓𝑓 𝑛𝑛 ) 

Example: 𝑓𝑓 𝑛𝑛 =  2𝑛𝑛2, 𝑔𝑔 𝑛𝑛 =  𝑛𝑛3

Alternative (better) notation: 𝑓𝑓 𝑛𝑛 ∈ 𝑂𝑂(𝑔𝑔 𝑛𝑛 )
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Examples
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• 106 𝑛𝑛3 +  2𝑛𝑛2 − 𝑛𝑛 + 10 =

• 𝑛𝑛  +  log𝑛𝑛 =

• 𝑛𝑛 (log𝑛𝑛 + 𝑛𝑛)  =



Little-oh
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If 𝑂𝑂-notation is like ≤, then 𝑜𝑜-notation is like <

Example:     2𝑛𝑛2 + 12 = 𝑜𝑜(𝑛𝑛3)  (𝑛𝑛0 = max{4/𝑐𝑐, 3}) 

𝑓𝑓 𝑛𝑛 = 𝑜𝑜(𝑔𝑔 𝑛𝑛 ) means:
 For every constant 𝑐𝑐 > 0, there exists 𝑛𝑛0 > 0 such that 
            𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐𝑔𝑔 𝑛𝑛  for every 𝑛𝑛 ≥ 𝑛𝑛0



True facts about asymptotic expressions
Which of the following statements is true about the 
function 𝑓𝑓 𝑛𝑛 =  2𝑛𝑛?

a)  𝑓𝑓 𝑛𝑛 = 𝑂𝑂 3𝑛𝑛

b)  𝑓𝑓 𝑛𝑛 = 𝑜𝑜 3𝑛𝑛

c)  𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛2

d)  𝑛𝑛2 = 𝑂𝑂(𝑓𝑓 𝑛𝑛 )
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Asymptotic notation within expressions
Asymptotic notation within an expression is shorthand for 
“there exists a function satisfying the statement”
Examples:
• 𝑛𝑛𝑂𝑂(1)

• 𝑛𝑛2 + 𝑂𝑂 𝑛𝑛

• 1 + 𝑜𝑜 1 𝑛𝑛
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FAABs: Frequently asked asymptotic bounds
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• Polynomials. 𝑎𝑎0 +  𝑎𝑎1𝑛𝑛 +  … +  𝑎𝑎𝑑𝑑𝑛𝑛𝑑𝑑  is  𝑂𝑂(𝑛𝑛𝑑𝑑)  if  𝑎𝑎𝑑𝑑 > 0
• Logarithms. log 𝑎𝑎 

𝑛𝑛 = 𝑂𝑂(log 𝑏𝑏 
𝑛𝑛) for all constants 𝑎𝑎, 𝑏𝑏 >  0

                          For every 𝑐𝑐 >  0,  log𝑛𝑛 =  𝑜𝑜(𝑛𝑛𝑐𝑐)

• Exponentials. For all 𝑏𝑏 > 1 and all 𝑑𝑑 >  0,  𝑛𝑛𝑑𝑑 =  𝑜𝑜(𝑏𝑏𝑛𝑛)

• Factorial.  𝑛𝑛! = 𝑛𝑛 𝑛𝑛 − 1 ⋯1
   By Stirling’s formula,

𝑛𝑛! = 2𝜋𝜋𝑛𝑛
𝑛𝑛
𝑒𝑒

𝑛𝑛
1 + 𝑜𝑜 1 = 2𝑂𝑂(𝑛𝑛 log 𝑛𝑛)
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