## BU CS 332 – Theory of Computation

https://forms.gle/ziHz9k95spAvq9NK6

#### Lecture 17:

- Mapping Reduction Examples
- Asymptotic Notation

Mark Bun

March 31, 2025



Reading: Sipser Ch 5.3, 7.1

## Mapping Reductions: Motivation

- 1. How do we formalize the notion of a reduction?
- 2. How do we use reductions to show that languages are unrecognizable?
- 3. How do we protect ourselves from accidentally "proving" bogus statements about recognizability?

# Mapping Reductions

A function  $f: \Sigma^* \to \Sigma^*$  is computable if there is a TM M which, given as input any  $w \in \Sigma^*$ , halts with only f(w) on its tape. ("Outputs f(w)")

#### **Definition:**

Let  $A, B \subseteq \Sigma^*$  be languages. We say A is mapping reducible to B, written

 $A \leq_{\mathrm{m}} B$ 

if there is a computable function  $f: \Sigma^* \to \Sigma^*$  such that for all strings  $w \in \Sigma^*$ , we have  $w \in A \Leftrightarrow f(w) \in B$ 

# Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

## Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable

#### New Proof: Equality Testing for TMs

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem:  $E_{TM} \leq_m EQ_{TM}$  (Hence  $EQ_{TM}$  is undecidable) Proof: The following TM N computes the reduction f:

On input  $\langle M \rangle$ : 1. Construct TMs  $M_1$ ,  $M_2$  as follows:  $M_1 = M$   $M_2 = "On input x,$ 1. Ignore x and reject"

2. Output  $\langle M_1, M_2 \rangle$ 

## Unrecognizability

Theorem: If  $A \leq_m B$  and B is recognizable, then A is also recognizable

Corollary: If  $A \leq_m B$  and A is unrecognizable, then B is also unrecognizable

Corollary: If  $\overline{A_{TM}} \leq_m B$ , then B is unrecognizable



Let *L* be a language. Which of the following is true?

a) If  $L \leq_{m} A_{TM}$ , then L is recognizable b) If  $A_{TM} \leq_{m} L$ , then L is recognizable c) If L is recognizable, then  $L \leq_{m} A_{TM}$ d) If L is recognizable, then  $A_{TM} \leq_{m} L$ 

#### **Theorem:** *L* is recognizable *if and only* if $L \leq_m A_{TM}$

#### Recognizability and $A_{TM}$

#### Theorem: *L* is recognizable *if and only if* $L \leq_m A_{TM}$ **Proof**:

Example: Another reduction to  $EQ_{TM}$   $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem:  $A_{TM} \leq_m EQ_{TM}$ Proof: The following TM N computes the reduction f:

What should the inputs and outputs to f be?

- a) f should take as input a pair  $\langle M_1, M_2 \rangle$  and output a pair  $\langle M, w \rangle$
- b) f should take as input a pair  $\langle M, w \rangle$  and output a pair  $\langle M_1, M_2 \rangle$
- c) f should take as input a pair  $\langle M_1, M_2 \rangle$  and either accept or reject
- d) f should take as input a pair  $\langle M, w \rangle$  and either accept or reject

Example: Another reduction to  $EQ_{TM}$   $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem:  $A_{TM} \leq_m EQ_{TM}$ Proof: The following TM computes the reduction f:

On input  $\langle M, w \rangle$ :

1. Construct TMs  $M_1$ ,  $M_2$  as follows:  $M_1$  = "On input x,  $M_2$  = "On input x,

#### 2. Output $\langle M_1, M_2 \rangle$

## Consequences of $A_{\rm TM} \leq_{\rm m} EQ_{\rm TM}$

1. Since  $A_{TM}$  is undecidable,  $EQ_{TM}$  is also undecidable

2.  $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$  implies  $\overline{A_{\text{TM}}} \leq_{\text{m}} \overline{EQ_{\text{TM}}}$ Since  $\overline{A_{\text{TM}}}$  is unrecognizable,  $\overline{EQ_{\text{TM}}}$  is unrecognizable

### $EQ_{TM}$ itself is also unrecognizable $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem: $\overline{A_{TM}} \leq_m EQ_{TM}$ (Hence $EQ_{TM}$ is unrecognizable)

**Proof:** The following TM computes the reduction:

On input  $\langle M, w \rangle$ :

- 1. Construct TMs  $M_1$ ,  $M_2$  as follows:
  - $M_1$  = "On input x,
    - 1. Ignore *x*
    - 2. Run *M* on input *w*
    - 3. If *M* accepts, accept. Otherwise, reject."
- 2. Output  $\langle M_1, M_2 \rangle$

M<sub>2</sub> = "On input x, 1. Ignore x and reject"

## Where we are in CS 332

| Automata | Computability | Complexity |
|----------|---------------|------------|
|----------|---------------|------------|

Previous unit: Computability theory What problems can / can't computers solve?

Final unit: Complexity theory What problems can / can't computers solve under constraints on their computational resources?

## Time and space complexity

Today: Start answering the basic questions

- 1. How do we measure complexity? (as in CS 330)
- 2. Asymptotic notation (as in CS 330)
- 3. How robust is the TM model when we care about measuring complexity?
- 4. How do we mathematically capture our intuitive notion of "efficient algorithms"?

## Time and space complexity

Time complexity of a TM = Running time of an algorithm

= Max number of steps as a <u>function</u> of input length n

# Space complexity of a TM = Memory usage of algorithm = Max number of tape cells as a <u>function</u> of input length n

Review of asymptotic notation *O*-notation (upper bounds)

f(n) = O(g(n)) means:There exist constants  $c > 0, n_0 > 0$  such that  $f(n) \le cg(n)$  for every  $n \ge n_0$ 

Example: 
$$2n^2 + 12 = O(n^3)$$
 (*c* = 3, *n*<sub>0</sub> = 4)

### Properties of asymptotic notation:

Transitive:

f(n) = O(g(n)) and g(n) = O(h(n)) means f(n) = O(h(n))

#### Not reflexive:

f(n) = O(g(n)) does not mean g(n) = O(f(n))



Example: 
$$f(n) = 2n^2$$
,  $g(n) = n^3$ 

#### Alternative (better) notation: $f(n) \in O(g(n))$

#### Examples

•  $10^6 n^3 + 2n^2 - n + 10 =$ 

•  $\sqrt{n} + \log n =$ 

•  $n(\log n + \sqrt{n}) =$ 

#### Little-oh

If *O*-notation is like  $\leq$ , then *o*-notation is like < f(n) = o(g(n)) means: For every constant c > 0, there exists  $n_0 > 0$  such that  $f(n) \leq cg(n)$  for every  $n \geq n_0$ 

Example:  $2n^2 + 12 = o(n^3)$   $(n_0 = \max\{4/c, 3\})$ 

## True facts about asymptotic expressions

Which of the following statements is true about the function  $f(n) = 2^n$ ?

a) 
$$f(n) = O(3^n)$$

b) 
$$f(n) = o(3^n)$$

c) 
$$f(n) = O(n^2)$$

d) 
$$n^2 = O(f(n))$$



## Asymptotic notation within expressions

Asymptotic notation within an expression is shorthand for "there exists a function satisfying the statement"

#### Examples:

•  $n^{O(1)}$ 

•  $n^2 + O(n)$ 

• (1 + o(1))n

#### FAABs: Frequently asked asymptotic bounds

- Polynomials.  $a_0 + a_1n + \dots + a_dn^d$  is  $O(n^d)$  if  $a_d > 0$
- Logarithms.  $\log_a n = O(\log_b n)$  for all constants a, b > 0

For every 
$$c > 0$$
,  $\log n = o(n^c)$ 

- Exponentials. For all b > 1 and all d > 0,  $n^d = o(b^n)$
- Factorial.  $n! = n(n-1) \cdots 1$

By Stirling's formula,

$$n! = \left(\sqrt{2\pi n}\right) \left(\frac{n}{e}\right)^n \left(1 + o(1)\right) = 2^{O(n\log n)}$$