BU CS 332 – Theory of Computation

https://forms.gle/bZBpiC6L6P8foBbJA

Lecture 19:

Time/Space Complexity Reading:

• Time/Space Hierarchies Sipser Ch 7.1-2, 8.0, 9.1

Complexity Class P

Mark Bun April 9, 2025

Time and space complexity

The basic questions

- 1. How do we measure complexity?
- 2. Asymptotic notation
- 3. How robust is the TM model when we care about measuring complexity?
- 4. How do we mathematically capture our intuitive notion of "efficient algorithms"?

Last Time: Asymptotic Notation

Big-Oh: f(n) = O(g(n)) if there exist c, n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$

$$(00 n^{2} + n = O(n^{2})$$
but $(00n^{2} + n \neq o(n^{2})$

$$= o(n^{3}) = o(n^{2} \log n)$$

<u>Little-Oh</u>: f(n) = o(g(n)) if for every c there exists n_0

such that $f(n) \leq cg(n)$ for all $n \geq n_0$ fin) f(n) = o(q(n)) f(n)

Time complexity

Time complexity of a TM (algorithm) = maximum number of steps it takes on a worst-case input as a facility of input and in the last of input and in the last of input and in the last of input and i

"runtine hand". Topat length on # skps

Formally: Let $f: \mathbb{N} \to \mathbb{N}$. A TM M runs in time f(n) if for every n and every input $w \in \Sigma^n$, M halts on w within at most f(n) steps

ie A is solvable in O(f(n)) line

A language $A \in \text{TIME}(f(n))$ if there exists a basic single-tape

(deterministic) TM M that

- 1) Decides A, and
- 2) Runs in time O(f(n))

TIME (n") =

2 A | language 4 is destable 3
is quadratiz time 3

Time class containment

If f(n) = O(g(n)), then which of the following statements is always true?

- a) $TIME(f(n)) \subseteq TIME(g(n))$
 - b) $TIME(g(n)) \subseteq TIME(f(n))$
 - c) TIME(f(n)) = TIME(g(n))
 - d) None of the above

Example

$$A = \{0^m 1^m \mid m \ge 0\}$$

Ø Ø Ø Ø XYXX

M = "On input w:

- 1. Scan input and reject if not of the form 0^*1^* 3 0(n) have
- 2. While input contains both 0's and 1's:] o(n) thes though loop

 Cross off one 0 and one 1] o(n)
- 3. Accept if no 0's and no 1's left. Otherwise, reject."
- M runs in time $O(n^2)$ $O(n) + o(n) \cdot o(n) = o(n^2)$ $= \int \{0^m | m\}_{m = 0}\} \in TIME(n^2)$
- Is there a faster algorithm?

Example

$$A = \{0^m 1^m \mid m \ge 0\}$$

$$M' = \text{"On input } w:$$

- 1. Scan input and reject if not of the form 0^*1^*
- $O(\log n) \rightarrow 2$. While input contains both 0's and 1's:
 - Reject if the total number of 0's and 1's remaining is odd

 Cross off every other 0 and every other 1
 - 3. Accept if no 0's and no 1's left. Otherwise, reject."
 - Running time of M':

• Is there a faster algorithm?

Example

Running time of M': $O(n \log n)$

Theorem (Sipser, Problem 7.49): If L can be decided in $o(n \log n)$ time on a basic single-tape TM, then L is regular

Does it matter that we're using the 1-tape model for this result?

It matters: 2-tape TMs can decide A faster

```
M" = "On input w:

(1. Scan input and reject if not of the form 0*1*

(2. Copy 0's to tape 2)

(3. Scan tape 1. For each 1 read, cross off a 0 on tape 2

4. If 0's on tape 2 finish at same time as 1's on tape 1, accept. Otherwise, reject."
```

Analysis: A is decided in time O(n) on a 2-tape TM Moral of the story (part 1): Unlike decidability, time complexity depends on the TM model

How much does the model matter?

Theorem: Let $t(n) \ge n$ be a function. Every multi-tape. TM running in time t(n) has an equivalent single-tape TM running in time $O(t(n)^2)$

Ez: If A devlothe in trie
$$O(N^2)$$
 on a 2-tre IM also declarise in trie $O(N^{14})$ on a rade tree IM

Proof idea:

We already saw how to simulate a multi-tape TM with a single-tape TM

Need a runtime analysis of this construction

Moral of the story (part 2): Time complexity doesn't depend too much on the TM model (as long as it's deterministic, sequential)

Single vs. Multi-Tape

Theorem: Let $t(n) \ge n$ be a function. Every multi-tape TM running in time t(n) has an equivalent single-tape TM running in time $O(t(n)^2)$

Suppose B is decidable in time $O(n^2)$ on a 42-tape TM. What is the best upper bound you can give on the runtime of a basic single-tape TM deciding B?

a)
$$O(n^2)$$

b)
$$O(n^4)$$

c)
$$O(n^{84})$$

d)
$$2^{O(n)}$$

$$\mathcal{O}(t(n)^2) = \mathcal{O}(n^4)$$

Single vs. Multi-Tape

Theorem: Let $t(n) \ge n$ be a function. Every multi-tape TM running in time t(n) has an equivalent single-tape TM running in time $O(t(n)^2)$

Proof idea:

We already saw how to simulate a multi-tape TM with a single-tape TM

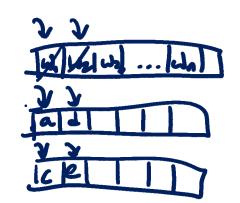
Need a runtime analysis of this construction

Simulating Multiple Tapes

(Implementation-Level Description)

On input $w = w_1 w_2 \dots w_n$ 1. Format tape into $\# \dot{w_1} w_2 \dots w_n \# \dot{\sqcup} \# \dot{\sqcup} \# \ddot{\sqcup} \#$ 2. For each move of \dot{M} : Original k-lape \dot{M}

Scan left-to-right, finding current symbols
Scan left-to-right, writing new symbols,
Scan left-to-right, moving each tape head



If a tape head goes off the right end, insert blank
If a tape head goes off left end, move back right

Single vs. Multi-Tape

ry multi-tape

Theorem: Let $t(n) \ge n$ be a function. Every multi-tape TM running in time t(n) has an equivalent single-tape TM running in time $O(t(n)^2)$

Proof: Time analysis of simulation

- Time to initialize (i.e., format tape): O(n + k)
- Time to simulate one step of multi-tape TM: $O(k \cdot t(n))$ (usbat # of possible contact because the size alg. can only touch $O(k \cdot t(n))$ tells
- Number of multi-tape steps to simulate: t(n)

$$\Rightarrow \text{ Total time: } O(n+k) + \underbrace{t(u)}_{in+k} \cdot O(k\cdot t(n)) = O(k\cdot t(n)^2 + n+k)$$

$$\text{ Here of smalther the per smalled up } = O(t(n)^2 + n+k)$$

Extended Church-Turing Thesis

Every "reasonable" (physically realizable) model of computation can be simulated by a basic, single-tape TM with only a **polynomial** slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs

Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation, parallel computation, DNA computing, quantum computation

Leght FCT to determinate, segmental models

with he tree

Space complexity

Space complexity of a TM (algorithm) = maximum number of tape cells it uses on a worst-case input

spee hand input bought worst-case # of cells

Formally: Let $f: \mathbb{N} \to \mathbb{N}$. A TM M runs in space f(n) if for every n and every input $w \in \Sigma^n$, M halts on w using at most f(n) tape cells

A language $A \in SPACE(f(n))$ if there exists a basic single-tape (deterministic) TM M that

- 1) Decides A, and
- 2) Runs in space O(f(n))

How does space relate to time?

Which of the following is true for every function

$$f(n) \ge n$$
?

SPA(E (f(n)) = \$ 4) A is decidable by a TM win

A + TIME(FIN)) =>

a)
$$TIME(f(n)) \subseteq SPACE(f(n))$$

b)
$$SPACE(f(n)) \subseteq TIME(f(n))$$

An algorithm touching 7 f(n)

(ells multake 7 f(n)

time to touch

Mose el

M deathy 4 is the Offini)

c)
$$TIME(f(n)) = SPACE(f(n))$$

d) None of the above

 \Rightarrow M decides A in space o(fin) \Rightarrow A \in SIACE(f(n)).

Back to our example

$$A = \{0^m 1^m \mid m \ge 0\}$$

9 999 XXXX

M = "On input w:

- 1. Scan input and reject if not of the form 0^*1^*
- 2. While input contains both 0's and 1's:

Cross off one 0 and one 1

3. Accept if no 0's and no 1's left. Otherwise, reject."

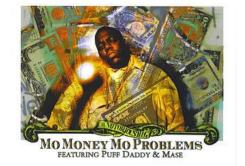
AE SPA(E(N)

Theorem: Let $s(n) \ge n$ be a function. Every multi-tape TM running in space s(n) has an equivalent single-tape TM running in space O(s(n))

Hierarchy Theorems

More time, more problems

We know, e.g., that $TIME(n^2) \subseteq TIME(n^3)$



(Anything we can do in quadratic time we can do in cubic time)

Question: Are there problems that we can solve in cubic time

that we <u>cannot</u> solve in quadratic time?

Theorem: There is a language $L \in TIME(n^3)$,

but
$$L \notin TIME(n^2)$$

TIME(n)
$$\subseteq$$
 TIME(n^2) weak 7) \exists Le TIME(n^2) \downarrow .

Let TIME(n)

"Time hierarchy":

$$TIME(n) \subsetneq TIME(n^2) \subsetneq TIME(n^3) \subsetneq TIME(n^4)$$
 ..

Diagonalization redux

TM M	$M(\langle M_1 \rangle)$?	$M(\langle M_2 \rangle)$?	$M(\langle M_3 \rangle)$?	$M(\langle M_4 \rangle)$?		$D(\langle D \rangle)$?
M_1	XN	N	Υ	Υ		
M_2	Ν	y y	Υ	Υ		
M_3	Υ	Υ	Υ	N		
M_4	N	N	Υ	N		
i					٠.	
D						

 $UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}$ $L = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle$ within $n^{2.5}$ steps}

An explicit separating language

Theorem: $L = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \text{ within } n^{2.5} \text{ steps} \}$

is in $TIME(n^3)$, but not in $TIME(n^2)$

Proof Sketch: In $TIME(n^3)$

On input $\langle M \rangle$:

- Takes O(n3)
- 1. Simulate M on input $\langle M \rangle$ for $n^{2.5}$ steps
- 2. If *M* accepts, reject. If *M* rejects or did not yet halt, accept.

An explicit separating language

Theorem: $L = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \text{ within } n^{2.5} \text{ steps} \}$

is in $TIME(n^3)$, but not in $TIME(n^2)$

Proof Sketch: Not in $TIME(n^2)$

Suppose for contradiction that D decides D in time $O(n^2)$

The cores:

1) 0 acapts input
$$\langle 0 \rangle \Rightarrow 0$$
 acapts $\langle 0 \rangle$ w/in $\langle 0 \rangle \approx 10^{2}$ states

 $\langle 1 \rangle = 0$ acapts input $\langle 0 \rangle \Rightarrow 0$ acapts $\langle 0 \rangle = 0$ wisech input $\langle 0 \rangle \Rightarrow 0$ does not acapt $\langle 0 \rangle = 0$ and $\langle 0 \rangle \approx 10^{2}$ states

 $\langle 1 \rangle = 0$ wisech input $\langle 0 \rangle = 0$ 0 does not acapt $\langle 0 \rangle = 0$ and $\langle 0 \rangle \approx 10^{2}$ states

 $\langle 1 \rangle = 0$ does not acapt $\langle 0 \rangle = 0$ and $\langle 0 \rangle \approx 10^{2}$ states

 $\langle 1 \rangle = 0$ does not acapt $\langle 0 \rangle = 0$ acapts $\langle 0 \rangle = 0$ acapts $\langle 0 \rangle = 0$ does not acapt $\langle 0 \rangle = 0$ and $\langle 0 \rangle = 0$ acapts $\langle 0 \rangle = 0$

Time and space hierarchy theorems

• For every* function $t(n) \ge n \log n$, there exists a language

decidable in
$$t(n)$$
 time, but not in $o\left(\frac{t(n)}{\log t(n)}\right)$ time.

Exists a language $t(n) = n^2$

The standard property of the standard part of the standa

• For every* function $s(n) \geq \log n$, there exists a language decidable in s(n) space, but not in o(s(n)) space.

*"time constructible" and "space constructible", respectively

Complexity Class P

Time and space complexity

The basic questions

- 1. How do we measure complexity?
- 2. Asymptotic notation
- 3. How robust is the TM model when we care about measuring complexity?
- 4. How do we mathematically capture our intuitive notion of "efficient algorithms"?

Complexity class P

Definition: P is the class of languages decidable in polynomial time on a basic single-tape (deterministic) TM

$$P = \bigcup_{k=1}^{\infty} TIME(n^k) = TSME(n) \cup TIME(n^3)...$$

- Class doesn't change if we substitute in another reasonable deterministic model (Extended Church-Turing)
- Cobham-Edmonds Thesis: Roughly captures class of problems that are feasible to solve on computers

A note about encodings

We'll still use the notation () for "any reasonable" encoding of the input to a TM...but now we have to be more careful about what we mean by "reasonable"

How long is the encoding of a V-vertex, E-edge graph...

... as an adjacency matrix?

... as an adjacency list?

How long is the encoding of a natural number k

... in binary?

... in decimal?

... in unary?

Describing and analyzing polynomial-time algorithms

- Due to Extended Church-Turing Thesis, we can still use high-level descriptions on multi-tape machines
- Polynomial-time is robust under composition: poly(n) executions of poly(n)-time subroutines run on poly(n)-size inputs gives an algorithm running in poly(n) time.
 - ⇒ Can freely use algorithms we've seen before as subroutines if we've analyzed their runtime

 Need to be careful about size of inputs! (Assume inputs represented in <u>binary</u> unless otherwise stated.)