BU CS 332 – Theory of Computation

https://forms.gle/ERY3Hk4MWvvBzGxb7

Lecture 21:

• NP: Nondeterminstic TMs vs. Deterministic Verifiers Reading: Sipser Ch 7.3-7.4

Mark Bun April 16, 2025

Nondeterministic time and NP

Let $f : \mathbb{N} \to \mathbb{N}$

A NTM *M* runs in time f(n) if on every input $w \in \Sigma^n$,

M halts on *w* within at most f(n) steps on every computational branch

NTIME(f(n)) is a class (i.e., set) of languages:

A language $A \in \text{NTIME}(f(n))$ if there exists an NTM M that

- 1) Decides A, and
- 2) Runs in time O(f(n))

Definition: NP is the class of languages decidable in polynomial time on a nondeterministic TM

 $NP = \bigcup_{k=1}^{\infty} NTIME(n^k) = NTIME(n) \cup NTIME(n^2) \cup NTIME(n^3) \cup \dots$ = $L \mid \exists NTM M \text{ deciding } L \text{ in poly-tries}$

f

Speeding things up with nondeterminism (v, ε)

 $TRIANGLE = \{\langle G \rangle \mid \text{digraph } G \text{ contains a triangle} \}$

Deterministic algorithm:

For $u \in V$. For $v \in V$. For $v \in V$. Tout if (u, v), (v, w), (w, u) all in ENondeterministic algorithm: Nondeterministic algorithm: Nondeterministic algorithm: Nondeterministic algorithm: Test ff (u, v), (v, J), (w, u) all in E. If so outh, elve right.

Hamiltonian Path

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph and there} \\ \text{is a path from } s \text{ to } t \text{ that passes} \\ \text{``Hen:``} \text{``Hen:``} through every vertex exactly once} \}$

$HAMPATH \in NP$

The following **nondeterministic** algorithm decides *HAMPATH* in polynomial time:

12 153 to describe adj. mature

On input $\langle G, S, t \rangle$: (Vertices of G are numbers 1, ..., k)

1. Nondeterministically guess a sequence O(u, b, k) $L_{n} \stackrel{h}{\sim} C_{1}, C_{2}, \dots, C_{k}$ of numbers $1, \dots, k$

2. Check that $c_1, c_2, ..., c_k$ is a permutation: Every number 1, ..., k appears exactly once 3. Check that $c_1 = s$, $c_k = t$, and there is an edge from every c_i to c_{i+1} o(ungit) \cdot o(u²) = o(u³ logb)

4. Accept if all checks pass, otherwise, reject.

Analyzing the algorithm

Need to check:

1) Correctness

(6,s,t) e HAMPATH -> d C₁₁..., C₁₁ forning on Ham. It on in path from s to t in G
Drouch of underforning on which C₁₁..., C₁₁ was guessed
i) hits every where once 2) forns a path from s to t
all cleaks pass, NTM accepts
(6,s,t) d HAMPATH => U C₁₅..., C₁₁ fail to form a Ham. I towns path is all branches of underforming lead to guessed c₁₀..., C₁₁ Hat fuls
2) Running time at keyt one check => all branches verset.

+ $O((u log h)^2)$ a(h lag h) grees condidate path dech and date 1ath hits every arter one

+ $O(u^3 log u) = O(u^3 log u)$ Clack condidate

fath is a path

when h is polynomial as a factor of model length 12°

CS332 - Theory of Computation

Nondeterministically guessing, then checking

How did we design an NTM for HAMPATH?

- Given a candidate path, it is easy (poly-time) to check whether this path is a Hamiltonian path
- We designed a poly-time NTM by nondeterministically guessing this path and then deterministically checking it
- Lots of problems have this structure (CLIQUE, 3-COLOR, FACTOR,...). They might be hard to solve, but a candidate solution is easy to check.

<u>General structure</u>: $w \in L$ if and only if there exists a nondeterministically guessable, but deterministically checkable c

An alternative characterization of NP

"Languages with polynomial-time verifiers"

A verifier for a language L is a deterministic algorithm V such that $w \in L$ iff there exists a string c such that $V(\langle w, c \rangle)$ accepts "certificale" "where" "east"

Running time of a verifier is only measured in terms of |w|

V is a polynomial-time verifier if it runs in time polynomial in |w| on every input $\langle w, c \rangle$

(Without loss of generality, |c| is polynomial in |w|, i.e., $|c| = O(|w|^k)$ for some constant k)

HAMPATH has a polynomial-time verifier Certificate *c*: of vertices C1, C2, ..., Cu representing on condidate 0(1 3 log h) Protine of algorithm? O(K ? log h) 3 poly remial in |w| = k + 2 log h Verifier V: On input $\langle \overline{G, s, t}; c \rangle$: (Vertices of G are numbers 1, ..., k) 1. Check that c_1, c_2, \ldots, c_k is a permutation: Every number 1, ..., k appears exactly once 2. Check that $c_1 = s$, $c_k = t$, and there is an edge from every c_i to c_{i+1} 3. Accept if all checks pass, otherwise, reject. (onectress: ~(6,5,1) ~ NAMPATA => 3 (1,...,(n a Man. + tonom poth from 5 tot ∃ C E (1,..., (u S.I. V(<6.5,t; c)) augts · LG, S, E7 & HAMIATH => & Churs Cu feis to be a Hamiltuign . poth =) & C= CI, ..., Con causes V (<6.s,t; ()) to react. 4/16/2025 9

NP is the class of languages with polynomialtime verifiers

Theorem: A language $L \in NP$ iff there is a polynomialtime verifier for L Alternative proof of NP ⊆ EXP . V wel = c c.l. V(Lw, c7) aught 7 time T(n) · V well Vc V(Lw, c) react One can prove NP \subseteq EXP as follows. Let V be a verifier for an NP language L running in time T(n). We can construct a determinate $2^{O(T(n))}$ time algorithm *M* deciding *L* as follows. · V ~ EL M(~) augs] in time 20(+(+)) On input $\langle w, c \rangle$, run V on $\langle w, c \rangle$ and output the result On input w, run V on all possible $\langle w, c \rangle$, where c is a w certificate string. Accept if any run accepts. On input w, run V on all possible $\langle w, c \rangle$, where c is a certificate of length at most T(|w|). Accept if any run accepts. On input w, run V on all possible $\langle \underline{x}, c \rangle$, where x is a string

of length |w| and c is a certificate of length at most T(|w|). Accept if any run accepts.

NP is the class of languages with polynomialtime verifiers

- Theorem: A language $L \in NP$ iff there is a polynomialtime verifier for L
- **Proof:** \leftarrow Let *L* have a time- $\dot{T}(n)$ verifier $V(\langle w, c \rangle)$
- Idea: Design NTM N for L that nondeterministically guesses a certificate

NTM N: On inget w: 1) Nondeter musically guess c of length ST(1.21) 2) Ann V(Lw,c>). If accept, accept. If expects, reject.

CS332 - Theory of Computation

• If well: (one choss of V =) = I C s.d. V((usc)) acyob who has the to read T(usl) sinc V only has the to read T(usl) symbols => brach when c is gressed leads A to acyot. =I f w f L: V C V(((u), c)) => bracked A right.

NP is the class of languages with polynomialtime verifiers

 \Rightarrow Let L be decided by an NTM N running in time T(n)and making up to b nondeterministic choices in each step

Idea: Design verifier V for L where certificate is sequence of "good" nondeterministic choices CE [b] T(HI) Certificle where each is represents "toke the cill the close of this step i" Veifer on imput (w; c): 1) Smulale runing N on input is using nondetoministic choices reached by C N acuph, ucupt, if right, riject, 2) IF

WARNING: Don't mix-and-match the NTM and verifier interpretations of NP To show a language *L* is in NP, do exactly one:

1) Exhibit a poly-time NTM for L
N = "On input w:
<Do some nondeterministic stuff>..."

OR

2) Exhibit a poly-time (deterministic) verifier for L
 V = "On input w and certificate c:
 <Do some deterministic stuff>..."

Examples of NP languages: SAT

"Is there an assignment to the variables in a logical formula that make it evaluate to true?"

- Boolean variable: Variable that can take on the value true/false (encoded as 0/1)
- Boolean operations: \land (AND), \lor (OR), \neg (NOT)
- Boolean formula: Expression made of Boolean variables and operations. Ex: $\varphi(x_1, x_2, x_3) = (x_1 \lor \overline{x_2}) \land x_3$
- An assignment of 0s and 1s to the variables satisfies a formula φ if it makes the formula evaluate to 1

 $7_1 = 1$ $x_3 = 1$ $\psi(1, 1, 1) = (1 \lor 0) \land 1$ $7_2 = 1$ / $= 1 \land 1 = 1$

• A formula φ is satisfiable if there exists an assignment that satisfies it

Examples of NP languages: SAT $Ex: (x_1 \lor \overline{x_2}) \land x_3 \qquad \forall c^{c_5}, sinc \qquad x_{n=1}, x_{n=1}, satisfiable?$ $x_{n=1}, x_{n=1}, satisfiable?$ $x_{n=1}, x_{n=1}, x_{$

Claim: $SAT \in NP$