BU CS 332 — Theory of Computation

https://forms.gle/ERY3Hk4AMWvvBzGxb7

Lecture 21:
e NP: Nondeterminstic TMs vs. Reading:
Deterministic Verifiers Sipser Ch 7.3-7.4

Mark Bun
April 16, 2025

Nondeterministic time and NP

letf: N> N
ANTM M runs in time f(n) if on every input w € X",

M halts on w within at most f (n) steps on every
computational branch -

/

NTIME(f (n)) is a class (i.e., set) of languages:

A language A € NTIME(f (n)) if there exists an NTM M that
1) Decides 4, and

2) Runsintime O(f(n))

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM

NP = Uy, NTIME(n*) = NTZmET(n) y NTImE(n’) U ATIMEWE)0...
SLL| 3NN M deciding L pdy-bied)

4/16/2025 CS332 - Theory of Computation . 2

Speeding things up with nondeterminism

(v,)
7)
TRIANGLE = {{G) | digraph G contains a triangle}
Deterministic algorithm: ~, _—
; . N¥
& wue\V.
Cor VEV. OCIvI?) hies
For eV, Negagh (o3p
Tewk 3¢ (U, V), (VR (U all i E
"T“""- 3¢ vo, oceept

Nondeterministic algorithm:
”M&MJ\\H“C“J 3 WA, J é\/ 1 O(IH 'V‘)
Tesl # (\A,V), (‘V, J)) (U,M) al :n'E IS so 0_1:'()}) elie p:vd-.

4/16/2025 CS332 - Theory of Computation 3

Hamiltonian Path

HAMPATH = {(G, s, t) |G is a directed graph and there

is a[path from s to t that passes

WignAtaran et through every vertex exactly oncej}

L o bt

4/16/2025 CS332 - Theory of Computation 4

HAMPATH € NP

The following nondeterministic algorithm decides
HAMPATH in polynomial time:

& Thib dwdee ad;, medoc
g lh

: s :
On input (G, s, t): (Vertices of G are numbers 1, ..., k)
1. Nondeterministically guess a sequence} 0L g k)
1, Cy, ..., Ck Of numbers 1, ..., k hie to gwss

M whes | 9 Check that ¢4, ¢y, ..., Ci is @ permutation: Ever
number 1, ..., k appears exactly once e

q*th 2

o o . o(l Loy
g1, |3 Checkthatc, = s, ¢ = ¢, and there is an edge

i . from every ¢; t0 Ciy1 oim®) * oUY) = o(U? Lyw)

4. Accept if all checks pass, otherwise, reject.

4/16/2025 CS332 - Theory of Computation 5

Analyzing the algorithm

Need to check:

1) Correctness

g o v Hawroa:q peth
4 () ¢ HAMPATA = 3 .l fvag »
ters Some § o+ W C

=) ok of wnddTasom gn yhich Ciy ;% was gmgd
D hin ey wie e 1) fras o pn fom o o T
=2 al cleds prsy, N™M aceh
28657 ¢ Abmiam =y Cooinslo $ad o form o Haw) Poana ool
2 ol bemdes of wmdederaiim bead §o guresmed co-, Fu et falg

2) Running time of ket o checle 2 Al balbes o,
O 2 &)+ O (wisg)?) + 0> 2oy W= o gegy
W~ ——_ M
qub Cmlidale peth Geoe mdidek 1oh Uedn camdidale
Wh 0ty el ote bt B 4 ety

Wech B pelystunl a8 a
4/16/2025 CS332 - Theory of Computation C"EFM °(, W Mﬁs

Nondeterministically guessing, then checking

How did we design an NTM for HAMPATH?

e Given a candidate path, it is easy (poly-time) to check
whether this path is a Hamiltonian path

* We designed a poly-time NTM by nondeterministically
guessing this path and then deterministically checking it

* Lots of problems have this structure (CLIQUE, 3-COLOR,
FACTOR,...). They might be hard to solve, but a candidate
solution is easy to check.

General structure: w € L if and only if there exists a
nondeterministically guessable, but deterministically
checkable ¢

An alternative characterization of NP

“Languages with polynomial-time verifiers”

A verifier for a language L is a deterministic algorithm IV
such that w € L iff there exists a string ¢ such that

e

V({w, c)) accepts “oukbicalt” Cwhast < gasf

Running time of a verifier is only measured in terms of |w|

V' is a polynomial-time verifier if it runs in time polynomial
in |w| on every input (w, c)

(Without loss of generality, |c| is ponQ)mial in |w|, i.e.,
Ic| = O(|w|*) for some constant k)

c
4/16/2025 CS332 - Theory of Computation 8

HAMPATH has a polynomial-time verifier
Certificate c: €y, €5, .., €« Iob of whe

repevonhiy cand:dale p=th
\fﬁﬁu&mx o™ ey)

Verifier V: 3

Oninput (G, s, t;c): (Vertices of G are numbers 1, ..., k)

T goly wental Ta “"\ % W +ihylk

1. Check that ¢4, ¢5, ..., C is @ permutation: Every
number 1, ..., k appears exactly once

. Check that ¢; = s, ¢, = t, and there is an edge]
from every c; to ¢; 4

3. Accept if all checks pass, otherwise, reject.
(onechess”. Lo, 54) ¢ HAMPAM => 3J ¢,...¢, Wanitoamm poth fim St

= 3 cz(,.. G s4. V(K65,E,D) awph

¢ £6,5,62 ¢4 WA <> o ¢ G Sty o R a Haedemn - pobh
—-— Al £ = &. P4 _ _ Y e @& % P - g
TV = F Sjgv)Cw Cavyt v - .

4/16/2025 ° C5332‘—TheoryofCorr%oué(ti?ﬁ's‘ch7) T IG%F 9

NP is the class of languages with polynomial-
time verifiers

Theorem: A language L € NP iff there is a polynomial-
time verifier for L

4/16/2025 CS332 - Theory of Computation

10

Alternative proof of NP € EXP

e oel e b VILW,Q) auefh] ke TTn)
e\ qu de VLZU,7) reeed

One can prove NP € EXP as follows. Let VV be a verifier for a

NP Ian%uage L running in time T (n). We can construct a detomasie

20(T™M) time algorithm M deciding L as follows. et v e o
-do el mn(wW acph ’l . b ,Locm)) w’& O (v') "
cYogLl ML) regech) L deitabe @ _le&‘u)

i On input {w,c), run V" on (w, c) and outpuf the gesult £

[c]

On input w, run IV on all possible (w, c), where c is a wm‘
certificate string. Accept if any run accepts.

On input w, run V on all possible (w, c), where c is a
certificate th at most T'(|w|). Accept if any run
accepts. 7_“'“'“")) pisde c's of m

Bada
M On input w, run V on all possible (x, ¢), where X is a string
of length |w| and c is a certificate of length at most
T(lw|). Accept if any run accepts.

4/16/2025

CS332 - Theory of Computation 11

NP is the class of languages with
time verifiers

polynomial-

Theorem: A language L € NP iff there is a polynomial-

That, T 2
~~—

time verifier for L

poly(n)

Proof: < Let L have a time-T (n) verifier V({w, c))
ldea: Design NTM N for L that nondetermmlstlcally

guesses d certificate
Nt N _
o md W
) Na&*vcw&fd_(’ g5 ¢ of tealh STOW)
1) P V(ZL4,0). 16 ataph, acnt,
ﬁ otgech‘ yoJe‘_{-_
mw. TUD) Yo Ja qess

¥ OCT(M) twg s un V
= O(TMWI) kel Hie,

Cmc'l'\eis

e If wel -
Comclvesy of V
J ¢). Vlwod)

acaph
WK TN TIPS () PRy
ody hattie b d T
Symnly
) vawdh doe ¢ b 9essel
lealy AN O awet.
Tt Wil ¥e VW)

4/16/2025 CS332 - Theory of Computation

DY e, N dmk,,

NP is the class of languages with polynomial-

time verifiers

= Let L be decided by an NTM N running in time T (n)
and making up to b nondeterministic choices in each step

ldea: Design verifier IV for L where certificate is sequence

of “good” nondg&cerministic choices)
Corbfe C e Th) o
Jee eedh ¢ pprels t e e ¢ W chole
ot tve sp %

Vet V L

(W)

O :';'l" [0; C):
V) Sadale rumiy N e apt N iy
nndettan-dn cloces rbtorkd by C
) 3¢ N awh, acok | of rich, Ky

4\

\

4/16/2025 CS332 - Theory of Computation

A%

/N

13

WARNING: Don’t mix-and-match the NTM and

verifier interpretations of NP
To show a language L is in NP, do exactly one:

1) Exhibit a poly-time NTM for L
N =“On input w:
<Do some nondeterministic stuff>...”
OR

2) Exhibit a poly-time (deterministic) verifier for L
o~ e -
V' ="“On input w and certificate c:

—

<Do some deterministic stuff>...”

4/16/2025 CS332 - Theory of Computation 14

Examples of NP languages: SAT

“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”

 Boolean variable: Variable that can take on the value
true/false (encoded as 0/1) ==, «,

* Boolean operations: A (AND), v (OR), = (NOT)

* Boolean formula: Expression made of Boolean variables
and operations. Ex: @(xq,Xx5,x3) = (x1 VX3) A X3

* An assignment of Os and 1s to the variables satisfies a
formula ¢ if it makes the formula evaluate to 1
,= | Xy = | (1, 1,0)= CI\IO)A.I
Ay =0 = (Al =}
* A formula ¢ is satisfiable if there/exists an assignment
that satisfies it

D Suksfakle

4/16/2025 CS332 - Theory of Computation 15

Examples of NP languages: SAT
EX((X/lvx_z)/\x V65, Giw 24,7¢1, Satisfiable?

Aoz |
M 2 saksfyiy assgrunt

Ex: (x1 V xz) N X1 N X9 Satisfiable?
Ngkt Saksfahle
SAT = {{p)|p is a satisfiable formula}

Claim: SAT € NP

4/16/2025 CS332 - Theory of Computation 16

