
BU CS 332 – Theory of Computation

Lecture 21:
• NP: Nondeterminstic TMs vs.

Deterministic Verifiers

Reading:
Sipser Ch 7.3-7.4

Mark Bun
April 16, 2025

https://forms.gle/ERY3Hk4MWvvBzGxb7

Nondeterministic time and NP
Let 𝑓 ∶ ℕ → ℕ
A NTM 𝑀 runs in time 𝑓ሺ𝑛ሻ if on every input 𝑤 ∈ Σ௡,
𝑀 halts on 𝑤 within at most 𝑓ሺ𝑛ሻ steps on every
computational branch

NTIMEሺ𝑓ሺ𝑛ሻሻ is a class (i.e., set) of languages:
A language 𝐴 ∈ NTIMEሺ𝑓ሺ𝑛ሻሻ if there exists an NTM 𝑀 that
1) Decides 𝐴, and
2) Runs in time 𝑂ሺ𝑓ሺ𝑛ሻሻ

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM

NP ൌ ⋃ NTIMEሺ𝑛௞ሻஶ
௞ୀଵ

4/16/2025 CS332 - Theory of Computation 2

Speeding things up with nondeterminism
𝑇𝑅𝐼𝐴𝑁𝐺𝐿𝐸 ൌ 𝐺 digraph 𝐺 contains a triangleሽ

Deterministic algorithm:

Nondeterministic algorithm:

4/16/2025 CS332 - Theory of Computation 3

Hamiltonian Path
𝐻𝐴𝑀𝑃𝐴𝑇𝐻 ൌ 𝐺, 𝑠, 𝑡 𝐺 is a directed graph and there

is a path from 𝑠 to 𝑡 that passes
 through every vertex exactly onceሽ

4/16/2025 CS332 - Theory of Computation 4

𝑠 𝑡

𝐻𝐴𝑀𝑃𝐴𝑇𝐻 ∈ NP

The following nondeterministic algorithm decides
𝐻𝐴𝑀𝑃𝐴𝑇𝐻 in polynomial time:

On input 𝐺, 𝑠, 𝑡 : (Vertices of 𝐺 are numbers 1, … , 𝑘)
1. Nondeterministically guess a sequence
𝑐ଵ, 𝑐ଶ, … , 𝑐௞ of numbers 1, … , 𝑘

2. Check that 𝑐ଵ, 𝑐ଶ, … , 𝑐௞ is a permutation: Every
number 1, … , 𝑘 appears exactly once

3. Check that 𝑐ଵ ൌ 𝑠, 𝑐௞ ൌ 𝑡, and there is an edge
from every 𝑐௜ to 𝑐௜ାଵ

4. Accept if all checks pass, otherwise, reject.
4/16/2025 CS332 - Theory of Computation 5

Analyzing the algorithm
Need to check:
1) Correctness

2) Running time

4/16/2025 CS332 - Theory of Computation 6

Nondeterministically guessing, then checking

How did we design an NTM for HAMPATH?
• Given a candidate path, it is easy (poly-time) to check

whether this path is a Hamiltonian path
• We designed a poly-time NTM by nondeterministically

guessing this path and then deterministically checking it
• Lots of problems have this structure (CLIQUE, 3-COLOR,

FACTOR,…). They might be hard to solve, but a candidate
solution is easy to check.

General structure: 𝑤 ∈ 𝐿 if and only if there exists a
nondeterministically guessable, but deterministically
checkable 𝑐

4/16/2025 CS332 - Theory of Computation 7

An alternative characterization of NP
“Languages with polynomial-time verifiers”
A verifier for a language 𝐿 is a deterministic algorithm 𝑉
such that 𝑤 ∈ 𝐿 iff there exists a string 𝑐 such that
𝑉ሺ 𝑤, 𝑐 ሻ accepts

Running time of a verifier is only measured in terms of 𝑤

𝑉 is a polynomial-time verifier if it runs in time polynomial
in |𝑤| on every input 𝑤, 𝑐
(Without loss of generality, |𝑐| is polynomial in |𝑤|, i.e.,
𝑐 ൌ 𝑂ሺ|𝑤|௞ሻ for some constant 𝑘)

4/16/2025 CS332 - Theory of Computation 8

𝐻𝐴𝑀𝑃𝐴𝑇𝐻 has a polynomial-time verifier
Certificate 𝑐:

Verifier 𝑉:
On input 𝐺, 𝑠, 𝑡; 𝑐 : (Vertices of 𝐺 are numbers 1, … , 𝑘)

1. Check that 𝑐ଵ, 𝑐ଶ, … , 𝑐௞ is a permutation: Every
number 1, … , 𝑘 appears exactly once

2. Check that 𝑐ଵ ൌ 𝑠, 𝑐௞ ൌ 𝑡, and there is an edge
from every 𝑐௜ to 𝑐௜ାଵ

3. Accept if all checks pass, otherwise, reject.

4/16/2025 CS332 - Theory of Computation 9

NP is the class of languages with polynomial-
time verifiers
Theorem: A language 𝐿 ∈ NP iff there is a polynomial-
time verifier for 𝐿

4/16/2025 CS332 - Theory of Computation 10

Alternative proof of NP ⊆ EXP

One can prove NP ⊆ EXP as follows. Let 𝑉 be a verifier for an
NP language 𝐿 running in time 𝑇ሺ𝑛ሻ. We can construct a
2ை ் ௡ time algorithm 𝑀 deciding 𝐿 as follows.

a) On input 〈𝑤, 𝑐〉, run 𝑉 on 〈𝑤, 𝑐〉 and output the result
b) On input 𝑤, run 𝑉 on all possible 〈𝑤, 𝑐〉, where 𝑐 is a

certificate string. Accept if any run accepts.
c) On input 𝑤, run 𝑉 on all possible 〈𝑤, 𝑐〉, where 𝑐 is a

certificate of length at most 𝑇 𝑤 . Accept if any run
accepts.

d) On input 𝑤, run 𝑉 on all possible 〈𝑥, 𝑐〉, where 𝑥 is a string
of length |𝑤| and 𝑐 is a certificate of length at most
𝑇 𝑤 . Accept if any run accepts.

4/16/2025 CS332 - Theory of Computation 11

NP is the class of languages with polynomial-
time verifiers
Theorem: A language 𝐿 ∈ NP iff there is a polynomial-
time verifier for 𝐿
Proof: ⇐ Let 𝐿 have a time-𝑇ሺ𝑛ሻ verifier 𝑉ሺ 𝑤, 𝑐 ሻ
Idea: Design NTM 𝑁 for 𝐿 that nondeterministically
guesses a certificate

4/16/2025 CS332 - Theory of Computation 12

NP is the class of languages with polynomial-
time verifiers
⇒ Let 𝐿 be decided by an NTM 𝑁 running in time 𝑇ሺ𝑛ሻ

and making up to 𝑏 nondeterministic choices in each step
Idea: Design verifier 𝑉 for 𝐿 where certificate is sequence
of “good” nondeterministic choices

4/16/2025 CS332 - Theory of Computation 13

WARNING: Don’t mix-and-match the NTM and
verifier interpretations of NP
To show a language 𝐿 is in NP, do exactly one:

1) Exhibit a poly-time NTM for 𝐿
𝑁 = “On input 𝑤:

<Do some nondeterministic stuff>…”
OR

2) Exhibit a poly-time (deterministic) verifier for 𝐿
𝑉 = “On input 𝑤 and certificate 𝑐:

<Do some deterministic stuff>…”

4/16/2025 CS332 - Theory of Computation 14

Examples of NP languages: SAT
“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”
• Boolean variable: Variable that can take on the value

true/false (encoded as 0/1)
• Boolean operations: ∧ AND , ∨ OR , ൓ ሺNOTሻ
• Boolean formula: Expression made of Boolean variables

and operations. Ex: 𝜑 𝑥ଵ, 𝑥ଶ, 𝑥ଷ ൌ ሺ𝑥ଵ ∨ 𝑥ଶሻ ∧ 𝑥ଷ
• An assignment of 0s and 1s to the variables satisfies a

formula 𝜑 if it makes the formula evaluate to 1

• A formula 𝜑 is satisfiable if there exists an assignment
that satisfies it

4/16/2025 CS332 - Theory of Computation 15

Examples of NP languages: SAT
Ex: ሺ𝑥ଵ ∨ 𝑥ଶሻ ∧ 𝑥ଷ Satisfiable?

Ex: ሺ𝑥ଵ ∨ 𝑥ଶሻ ∧ 𝑥ଵ ∧ 𝑥ଶ Satisfiable?

𝑆𝐴𝑇 ൌ ሼ 𝜑 |𝜑 is a satisfiable formulaሽ
Claim: 𝑆𝐴𝑇 ∈ NP

4/16/2025 CS332 - Theory of Computation 16

