BU CS 332 —Theory of Computation

https://forms.gle/ERY3Hk4MWvvBzGxb7

Lecture 21:
* NP: Nondeterminstic TMs vs. Reading:
Deterministic Verifiers Sipser Ch 7.3-7.4

Mark Bun
April 16, 2025

https://forms.gle/ERY3Hk4MWvvBzGxb7

Nondeterministic time and NP
letf: N—-> N
ANTM M runs in time f(n) if on every input w € ",

M halts on w within at most f (n) steps on every
computational branch

NTIME(f (n)) is a class (i.e., set) of languages:
A language A € NTIME(f (n)) if there exists an NTM M that

1) Decides A, and
2) Runsin time O(f (n))

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM

NP = Uy, NTIME(n*)

4/16/2025 CS332 - Theory of Computation

Speeding things up with nondeterminism

TRIANGLE = {{G) | digraph G contains a triangle}
Deterministic algorithm:

Nondeterministic algorithm:

4/16/2025 CS332 - Theory of Computation

Hamiltonian Path

HAMPATH = {(G, s, t) |G is a directed graph and there

is a path from s to t that passes
through every vertex exactly once}

4/16/2025 CS332 - Theory of Computation 4

HAMPATH € NP

The following nondeterministic algorithm decides
HAMPATH in polynomial time:

On input (G, s, t): (Vertices of G are numbers 1, ..., k)
1. Nondeterministically guess a sequence
C1, Cy, ..., Cx Of nUmMbers 1, ..., k

2. Check that ¢4, ¢y, ..., Cx is @ permutation: Every
number 1, ..., k appears exactly once

3. Check that ¢c; = s, ¢, = t, and there is an edge
from every c¢; to ¢; 41

4. Accept if all checks pass, otherwise, reject.

Analyzing the algorithm

Need to check:
1) Correctness

2) Running time

4/16/2025 CS332 - Theory of Computation

Nondeterministically guessing, then checking

How did we design an NTM for HAMPATH?

* Given a candidate path, it is easy (poly-time) to check
whether this path is a Hamiltonian path

* We designed a poly-time NTM by nondeterministically
guessing this path and then deterministically checking it

* Lots of problems have this structure (CLIQUE, 3-COLOR,
FACTOR,...). They might be hard to solve, but a candidate
solution is easy to check.

General structure: w € L if and only if there exists a
nondeterministically guessable, but deterministically
checkable ¢

An alternative characterization of NP

“Languages with polynomial-time verifiers”

A verifier for a language L is a deterministic algorithm V
such that w € L iff there exists a string ¢ such that
V({w, c)) accepts

Running time of a verifier is only measured in terms of |w/|

V' is a polynomial-time verifier if it runs in time polynomial
in |[w| on every input (w, c)

(Without loss of generality, |c| is polynomial in |w|, i.e.,
lc| = O(Jw|¥) for some constant k)

4/16/2025 CS332 - Theory of Computation 8

HAMPATH has a polynomial-time verifier

Certificate c:

Verifier V:
Oninput (G, s, t;c): (Vertices of G are numbers 1, ..., k)

1. Check that ¢4, ¢,, ..., ¢i is a permutation: Every
number 1, ..., k appears exactly once

2. Check that ¢; = s, ¢, = t, and there is an edge
from every c¢; to ¢; 41

3. Accept if all checks pass, otherwise, reject.

4/16/2025 CS332 - Theory of Computation 9

NP is the class of languages with polynomial-
time verifiers

Theorem: A language L € NP iff there is a polynomial-
time verifier for L

4/16/2025 CS332 - Theory of Computation

10

Alternative proof of NP € EXP

One can prove NP € EXP as follows. Let V be a verifier for a
NP Ian)%uage L running in time T (n). We can construct a

20(T(M) time algorithm M deciding L as follows.

a) Oninput(w,c), runV on (w, c) and output the result

b) Oninputw, runV on all possible (w, c¢), where c is a
certificate string. Accept if any run accepts.

c) Oninputw, runV on all possible (w, c), where c is a
certificate of length at most T(|w]). Accept if any run
accepts.

d) Oninputw, runV on all possible {(x, c), where x is a string
of length |w| and c is a certificate of length at most
T (|w]). Accept if any run accepts.

NP is the class of languages with polynomial-
time verifiers

Theorem: A language L € NP iff there is a polynomial-
time verifier for L

Proof: «< Let L have a time-T (n) verifier V({w, c))

ldea: Design NTM N for L that nondeterministically
guesses a certificate

4/16/2025 CS332 - Theory of Computation 12

NP is the class of languages with polynomial-
time verifiers

= Let L be decided by an NTM N running in time T'(n)
and making up to b nondeterministic choices in each step

Idea: Design verifier V for L where certificate is sequence
of “good” nondeterministic choices

4/16/2025 CS332 - Theory of Computation 13

WARNING: Don’t mix-and-match the NTM and

verifier interpretations of NP
To show a language L is in NP, do exactly one:

1) Exhibit a poly-time NTM for L
N =“On input w:
<Do some nondeterministic stuff>...”
OR

2) Exhibit a poly-time (deterministic) verifier for L

IV = “On input w and certificate c:
<Do some deterministic stuff>...”

4/16/2025 CS332 - Theory of Computation 14

Examples of NP languages: SAT

“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”

 Boolean variable: Variable that can take on the value
true/false (encoded as 0/1)

* Boolean operations: A (AND), v (OR), = (NOT)

* Boolean formula: Expression made of Boolean variables
and operations. Ex: @(xq,x5,%x3) = (X1 VX)) A X3

* An assignment of Os and 1s to the variables satisfies a
formula ¢ if it makes the formula evaluate to 1

* A formula ¢ is satisfiable if there exists an assighment
that satisfies it

4/16/2025 CS332 - Theory of Computation 15

Examples of NP languages: SAT

Ex: (x4 VX3) A X3 Satisfiable?

Ex: (x1 VXy) AX{ A Xy Satisfiable?

SAT = {{(p)|@ is a satisfiable formula}
Claim: SAT € NP

4/16/2025 CS332 - Theory of Computation 16

Examples of NP languages: Traveling

Salesperson

“Given a list of cities and distances between them, is
there a ‘short’ tour of all of the cities?”

More precisely: Given
* A number of cities m

e A function D:{1, ..., m} # - N giving the distance
between each pair of cities

e A distance bound B

TSP = {(m, D, B)|3 a tour visiting every city
with length < B}

4/16/2025 CS332 - Theory of Computation 17

P vs. NP

Question: Does P = NP?
Philosophically: Can every problem with an efficiently
verifiable solution also be solved efficiently?

Millennium Problems

Yang-Mills and Mass Gap

Experiment and computer simulations suggest the existence of a “mass gap" in the solution to the quantum versions of the Yang-Mills equations. But

n proof of this property is known.

A central problem in mathematics e

The prime number theorem determines the average distribution of the primes. The Rizmann hypothesis tells s about the deviation from the
aversge Formulsted in Riemanni's 1859 paper, it asserts that all the 'non-bvicus' zeros of the zeta function are complex numbers vith resl part 12,

Pvs NP Problem

(]
it is sasy'to check that a solution to 3 problem is correct, is it also &asy to sclve th problem? This is the essance of the Pvs NP question Typical of
the NP problems is that of the Hamiltonian Path Problem: given M cities to visit. how can ene do this without visiting a city twice? If you gveme a

sclution, | can sazily check that it is correct. But | cannot 3o saslly find 2 selution.

Navier-Stokes Equation
This is the equation which governs the flow of fluids such as water and air. However, there is no procf for the most basic questions one can asic do
solutions exist, and are they unique? Wy ask for a proof? Because a proof gives not only certitude, but also understanding.

Hodge Conjecture
The answer to this conjecture determines how much of the topology of the solution set of s system of algebraic equations can be defined in terms of
ion set has dimension less than four. Butin

further algebraic equations. The Hodge conjecture is known in certain special cases, e.g, when the sol
dimension four it s unknown.

EXP

EXP Poincaré Conjecture
In 1904 the French mathematician Henri Poincard asked if the thres dimensionsl sphere is characterized as the unique simply connected three
manifold. This question, the Poincaré conjecture, was aspecial case of Thurston's geometrization conjecture. Perelman's proof rells us that every.
thres manifold is built from a set of standard pisces. each with one of eight well-understocd geometries.

Birch and Swinnerton-Dyer Conjecture

Supported by much experimental evidence, this conjecture relates the number of points on 2n elliptic curve mod p to the rank of the group of
rational paints. Elliptic curves, defined by ions intwo v are: ical objects that arise in marny sreas: Wil
proof of the Fermat Conjecture, factarization of numbers into primes, and cryptography, to name three.

If P=NP If P=NP

4/16/2025 CS332 - Theory of Computation 18

In a world where P = NP:

* Many important decision problems can be solved in
polynomial time (HAMPATH, SAT, TSP, etc.)

* Many search problems can be solved in polynomial time
(e.g., given a natural number, find a prime factorization)

* Many optimization problems can be solved in polynomial
time (e.g., find the lowest energy conformation of a

protein)

1.
2
a1

In a world where P = NP:

» Secure cryptography (as we know it) becomes impossible

An NP search problem: Given a ciphertext ¢, find a plaintext
m and encryption key k that would encrypt to ¢

* Al / machine learning become easy: Identifying a consistent
classification rule is an NP search problem

* Finding mathematical proofs becomes easy: NP search
problem: Given a mathematical statement S and length
bound k, is there a proof of S with length at most k?

General consensus: P # NP

4/16/2025 CS332 - Theory of Computation 20

NP-Completeness

4/16/2025 (S332 - Theory of Computation

Understanding the P vs. NP question

Most believe P #= NP, but we are very far from proving it

Question 1: How can studying specific computational
problems help us get a handle on resolving P vs. NP?

Question 2: What would P # NP allow us to conclude
about specific problems we care about?

ldea: Identify the “hardest” problems in NP
Languages L € NP such that LeP iff P=NP

4/16/2025 CS332 - Theory of Computation 22

Recall: Mapping reducibility

Definition:

A function f: X" = X" is computable if thereisa TM M
which, given as input any w € X7, halts with only f(w) on
Its tape.

Definition:

Language A is mapping reducible to language B, written
A<, B

if there is a computable function f: X* = X" such that for
all stringsw € X", wehavew €4 < f(w) €B

4/16/2025 CS332 - Theory of Computation 23

Polynomial-time reducibility

Definition:

A function f: X* = X" is polynomial-time computable if there
is a polynomial-time TM M which, given as input any w € X7,
halts with only f(w) on its tape.

Definition:

Language A is polynomial-time reducible to language B,

written
A Sp B

if there is a polynomial-time computable function f:X* - X~
such that for all stringsw € £*, we havew € A & f(w) € B

4/16/2025 CS332 - Theory of Computation 24

Implications of poly-time reducibility

Theorem: If A <p B and B € P,then A € P

Proof: Let M decide B in poly time, and let f be a poly-

time reduction from A to B. The following TM decides A
in poly time:

4/16/2025 CS332 - Theory of Computation 25

	BU CS 332 – Theory of Computation
	Nondeterministic time and NP
	Speeding things up with nondeterminism
	Hamiltonian Path
	𝐻𝐴𝑀𝑃𝐴𝑇𝐻∈NP
	Analyzing the algorithm
	Nondeterministically guessing, then checking
	An alternative characterization of NP
	𝐻𝐴𝑀𝑃𝐴𝑇𝐻 has a polynomial-time verifier
	NP is the class of languages with polynomial-time verifiers
	Alternative proof of NP⊆EXP
	NP is the class of languages with polynomial-time verifiers
	NP is the class of languages with polynomial-time verifiers
	WARNING: Don’t mix-and-match the NTM and verifier interpretations of NP
	Examples of NP languages: SAT
	Examples of NP languages: SAT
	Examples of NP languages: Traveling Salesperson
	P vs. NP
	In a world where P=NP:
	In a world where P=NP:
	NP-Completeness
	Understanding the P vs. NP question
	Recall: Mapping reducibility
	Polynomial-time reducibility
	Implications of poly-time reducibility

