BU CS 332 — Theory of Computation

https://forms.gle/2CcC2ZVTBd12ziwX6

Lecture 4:
* More on NFAs Reading:
e NFAs vs. DFAs Sipser Ch 1.1-1.2

* Closure Properties?

Alexander Poremba & Mark Bun
January 29, 2026

https://forms.gle/2CcC2ZVTBd12ziwX6
https://forms.gle/2CcC2ZVTBd12ziwX6

Last Time

* Deterministic Finite Automata (DFAs)
* Informal description: State diagram
* Formal description: What are they?
* Formal description: How do they compute?

* Alanguage is regular if it is recognized by a DFA

* Intro to Nondeterministic Finite Automata (NFASs)

Nondeterminism

In a DFA, the machine is always in exactly one state upon
reading each input symbol

In @ nondeterministic FA, the machine can try out many

different ways of reading the same string
- Next symbol may cause an NFA to “branch” into

multiple possible computations
- Next symbol may cause NFA’s computation to fail to

enter any state at all

Nondeterminism
1 0 0,1

g N N
O=0-0O+C

A Nondeterministic Finite Automaton (NFA) accepts if
there exists a way to make it reach an accept state.

Ex. This NFA accepts input 1100, but does not accept input 11

Some special transitions

g-transitions
(don’t consume a symbol)

Multiple £
transitions

No transition

On®

L(N) — a) {w | w contains 101}
b) {w | w contains 11 or 101}
c) {w | w starts with 101}

d) {w | w starts with 11 or 101} E '

Formal Definition of a NFA

An NFAisa 5-tuple M = (Q,%,0,q,,F)
() is the set of states
2. is the alphabet

0: Q X X — P(Q) isthe transition function
q, € @ is the start state

F < (0 is the set of accept states

M accepts a string w if there exists a path from g, to
an accept state that can be followed by reading w.

1/29/2026 CS332 - Theory of Computation 8

0,1

Example
(D =()- .
— — —
N = (Q,Z,S, q();F) S(qO,O) —
Q = 190 91 92 93} 0(qo 1) =
L =1{0,1} 0(q,€) =

F o= {a3) o2 0) =

Nondeterminism

Deterministic
Computation

0 ¢ @ ¢ @ G @ m @ @ 4 @

accept or reject

1/29/2026

Nondeterministic
Computation

CS332 - Theory of Computation

Ways to think about
nondeterminism

* (restricted)
parallel
computation

* tree of possible
computations

e guessing and
verifying the
“right” choice

10

Why study NFAs?

* Not really a realistic model of computation: Real
computing devices can’t really try many possibilities in
parallel

But:

* NFAs can be simpler than DFAs
» Useful for understanding power of DFAs/regular languages

* Lets us study “nondeterminism” as a resource
(cf. P vs. NP)

NFAs can be simpler than DFAs

A DFA that recognizes the language
{w |w starts with 0 and ends with 1}:

An NFA for this language:

~0+-0-0

Equivalence of NFAs and
DFAS

1/29/2026 ~ (S332 - Theory o f Computation

Equivalence of NFAs and DFAS

Every DFA is an NFA, so NFAs are at least as powerful as
DFAs

Theorem: For every NFA N, there is a DFA M such that
L(M) = L(N)

Corollary: A language is regular if and only if it is
recognized by an NFA

1/29/2026 CS332 - Theory of Computation 14

Equivalence of NFAs and DFAs (Proof)

Let N = (Q,%,0,q, F) bean NFA
Goal: Construct DFAM = (Q',%, 9, q,, F') recognizing L(N)

./ \, Intuition: Run all threads of N in
/1\ 1\ parallel, maintaining the set of
I I '/'\' states where all threads are.

Formally: Q° = P(Q)
“The Subset Construction”

1/29/2026 CS332 - Theory of Computation 15

NFA — DFA Example

_.@_1.

Subset Construction (Formally, first attempt)

Input: NFA N = (Q,%,94,q,F)
Output: DFA M = (Q',%, &', q,', F') recognizing L(N)

QI
5! . QI X Z RN QI
5'(R,0) = forallR € Q and o € .

/

Qo =
F' =

1/29/2026 CS332 - Theory of Computation 17

Subset Construction (Formally, for real)
Input: NFA N = (Q,%,9,q,F)

Output: DFA M = (Q',%,8',q, ', F') recognizing L(N)
Q" = P(Q)

5’ . Q’ X Z RN Q’
0'(R,0) = Uyep 6(r,0) forallR € Qando €X.

4% = {90}
F' ={R € Q' | R contains some accept state of N}

1/29/2026 CS332 - Theory of Computation 18

NFA — DFA Example

Proving the Construction Works

Claim: For every string w, running M on w leads to state

{g € Q|There exists a computation path
of N on input w ending at g}

Proof idea: By induction on |w|

1/29/2026 CS332 - Theory of Computation 20

Historical Note

Subset Construction introduced in Rabin & Scott’s 1959
paper “Finite Automata and their Decision Problems”

1976 ACM Turing Award citation

For their joint paper "Finite Automata and
Their Decision Problem," which introduced
the idea of nondeterministic machines,
which has proved to be an enormously
valuable concept. Their (Scott & Rabin)
classic paper has been a continuous source

of inspiration for subsequent work in this
field.

1/29/2026 CS332 - Theory of Computation 21

NFA — DFA: The Catch

If N is an NFA with s states, how many states does the
DFA obtained using the subset construction have? (In the
worst case.)

a) s

b) s?

c) 2°

d) None of the above

s this construction the best we can do?

Subset construction converts an s state NFA into a 2°-state
DFA

Could there be a construction that always produces, say, an
s?-state DFA?

Theorem: For every s = 1, thereis a language L such that
1. There is an (s + 1)-state NFA recognizing L.

2. There is no DFA recognizing L with fewer than 2°
states.

Conclusion: For finite automata, nondeterminism provides an
exponential savings over determinism (in the worst case).

Closure Properties

1/29/2026 ~ (S332 - Theory of Computation

An Analogy

In algebra, we try to identify operations which are
common to many different mathematical structures

Example: The integersZ = {...— 2,—1,0,1,2, ... } are
closed under

 Addition:x + y

* Multiplication: x x vy

* Negation: —x

e ...but NOT Division: x / y

We'd like to investigate similar closure properties of the
class of regular languages

Regular operations on languages
Let A,B € X" be languages. Define

Union:A UB ={w|w € Aorw € B}
Concatenation: A e B = {xy |x € A,y € B}

Star: A* =

1/29/2026 CS332 - Theory of Computation

26

Other operations
Let A,B € X" be languages. Define

Complement: A = {w |w & A}

Intersection:4A N B = {w|w € Aand w € B}

Reverse: AR = {w |w® € 4}

1/29/2026 CS332 - Theory of Computation

27

Closure properties of the regular languages

Theorem: The class of regular languages is closed under
all three regular operations (union, concatenation, star),
as well as under complement, intersection, and reverse.

That is, if A and B are regular, then so are
AUB, AoB, A*, A, ANB, and AR

1/29/2026 CS332 - Theory of Computation 28

Proving Closure Properties

1/29/2026 ~ (S332 - Theory o f Computation

Complement

Complement: A = {w |w & A}

Theorem: The regular languages are closed under
complement, i.e., if A is regular, then A is also regular

Proof idea:

1/29/2026 CS332 - Theory of Computation

30

On proving your own closure properties

You’ll have homework/test problems of the form “show that
the regular languages are closed under some operation”

What would Sipser do?

- Give the “proof idea”: Explain how to take machine(s)
recognizing regular language(s) and create a new machine

- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works

	BU CS 332 – Theory of Computation
	Last Time
	Nondeterminism
	Nondeterminism
	Some special transitions
	Example
	Example
	Formal Definition of a NFA
	Example
	Nondeterminism
	Why study NFAs?
	NFAs can be simpler than DFAs
	Equivalence of NFAs and DFAs
	Equivalence of NFAs and DFAs
	Equivalence of NFAs and DFAs (Proof)
	NFA → DFA Example
	Subset Construction (Formally, first attempt)
	Subset Construction (Formally, for real)
	NFA → DFA Example
	Proving the Construction Works
	Historical Note
	NFA → DFA: The Catch
	Is this construction the best we can do?
	Closure Properties
	An Analogy
	Regular operations on languages
	Other operations
	Closure properties of the regular languages
	Proving Closure Properties
	Complement
	On proving your own closure properties

