
CS 535: Complexity Theory, Fall 2023

Homework 1
Due: 11:59PM, Tuesday, September 12, 2023.

Reminder. Homework must be typeset with LATEX preferred. Make sure you understand
the course collaboration and honesty policy before beginning this assignment. Collaboration
is permitted, but you must write the solutions by yourself without assistance. You must
also identify your collaborators. Assignments missing a collaboration statement will not be
accepted. Getting solutions from outside sources such as the Web or students not enrolled
in the class is strictly forbidden.

Problem 0 (Housekeeping). Please fill out the first day survey (https://forms.gle/dcLKu6JuAE8QeFJa7).
Read and sign the course Collaboration and Honesty Policy (https://cs-people.bu.edu/mbun/
courses/535_F23/handouts/collaboration-policy.pdf) and upload it to Gradescope. An elec-
tronic signature is fine.

Problem 1 (Encoding Graphs). An encoding is an unambiguous way to represent an object,
e.g., a natural number, a graph, or a Turing machine, as a string in Σ∗ for some alphabet
Σ. Encodings allow us to present complex objects as inputs to Turing machines and other
computational devices. One way to formalize an encoding of a set of objects D is as a
one-to-one (injective) function Enc : D → Σ∗.

A canonical directed graph G is a pair (V,E) where the vertex set V = [n] for some
natural number n ∈ N, and the edge set E ⊆ V × V is a set of ordered pairs of vertices.

(a) Describe an explicit encoding of the set D consisting of all canonical directed graphs
using the alphabet Σ = {0, 1}. You don’t have to go into excruciating detail here, but
it should be unambgiuous to the person reading your solution how any given directed
graph G maps to its encoding Enc(G). (3 points)

(b) How efficient is your encoding? That is, what is the (asymptotically) best upper bound
T (n) you can give on Enc(G) whenever G is a canonical directed graph on vertex set
V = [n]? Express your answer using big-O notation and briefly justify it. (3 points)

(c) Show that for every encoding function Enc, there exists an n-vertex canonical directed
graph G whose encoding length is |Enc(G)| ≥

(
n
2

)
. How does your upper bound from

part (b) compare to this lower bound? (4 points)

Problem 2 (Arithmetizing Turing Machines). In this class, we usually think of Turing
machines as computing functions f : {0, 1}∗ → {0, 1}∗, but TMs and their variants are
also naturally suited to computing functions f : N → N over the natural numbers. In this
problem you’ll explore a few such TM variants that historically helped bridge the machine
view of computability with the recursive function / λ-calculus view.

1

https://forms.gle/dcLKu6JuAE8QeFJa7
https://cs-people.bu.edu/mbun/courses/535_F23/handouts/collaboration-policy.pdf
https://cs-people.bu.edu/mbun/courses/535_F23/handouts/collaboration-policy.pdf

(a) A binary arithmetic machine maintains a tuple of counters (C1, . . . , Cm) and com-
putes a function f : N→ N as follows. At initialization, the first counter C1 is set to the
input z ∈ N and all other counters are set to 0. In one step of computation, the machine
“reads” the contents of each counter by testing whether it is equal to zero. Based on this
information, and its finite control state, it may then (possibly independently for each
counter) update each counter using one of the following arithmetic operations:

Ci ← Ci [no change]

Ci ← 0

Ci ← 1

Ci ← 2Ci + Cj for some other counter Cj

Ci ← ⌊Ci/2⌋
Ci ← Cj mod 2 for some other counter Cj.

When the machine halts, its output is the natural number loaded in the last counter Cm.

Show (using enough detail to convince your human reader) that a binary arithmetic
machine using at most 3k counters can simulate an arbitrary k-tape Turing machine.
That is, every k-tape TM can be converted into a 3k-counter binary arithmetic machine
that solves the same problem. Here you may convert between natural number inputs /
outputs and binary strings in any reasonable way of your choice. (10 points)

(b) (*Bonus Problem*) A counter machine also maintains a tuple of counters (C1, . . . , Cm),
but in each step of computation it is only allowed to read its counters by testing whether
they are equal to zero, and then update each counter by either incrementing by one,
decrementing by one, or leaving it the same. The output of the machine is the content
of counter Cm when the machine halts.

(i) Show that a counter machine can simulate a binary arithmetic machine, with a
constant-factor blowup in the number of counters used.

(ii) What is the runtime overhead of your simulation? That is, given a binary arith-
metic machine running in time T (n), what is the runtime of your counter machine
as a function of T (n)?

(iii) Is it possible to significantly improve your runtime overhead? Prove your answer.

2

