
CS 535: Complexity Theory, Fall 2023

Homework 3
Due: 11:59PM, Tuesday, September 26, 2023.

Reminder. Homework must be typeset with LATEX preferred. Make sure you understand
the course collaboration and honesty policy before beginning this assignment. Collaboration
is permitted, but you must write the solutions by yourself without assistance. You must
also identify your collaborators. Assignments missing a collaboration statement will not be
accepted. Getting solutions from outside sources such as the Web or students not enrolled
in the class is strictly forbidden.

Problem 1 (Decision vs. Optimization). An NP minimization problem is specified by a
polynomial-time computable objective function f : {0, 1}∗ × {0, 1}∗ → N and a polynomial
p. Given an input x ∈ {0, 1}∗, the problem is to find a y ∈ {0, 1}p(|x|) that minimizes f(x, y),
i.e., find a string in argmin

y∈{0,1}p(|x|)
f(x, y).

(a) Given a collection of sets S1, . . . , Sm ⊆ [n], a hitting set is a set T such that T ∩Si ̸= ∅
for every i = 1, . . . ,m. Describe how the task of finding a minimum-size hitting set
can be stated as an NP-minimization problem. (2 points)

(b) Consider the decision problem HS = {⟨n, k, S1, . . . , Sm⟩ | ∃ a hitting set for S1, . . . , Sm

of size ≤ k}. Show that if HS ∈ P, then there is a poly-time algorithm for finding a
minimum-size hitting set. (3 points)

(c) Show that P = NP if and only if every NP minimization problem can be solved in
polynomial time. (4 points)

Hint: We showed in class that P = NP iff every NP search problem can be solved in
poly-time. You can use this fact without proof.

Problem 2 (Sparse Languages). A language L ∈ {0, 1}∗ is sparse if there exists a polynomial
p(n) such that |L ∩ {0, 1}≤n| ≤ p(n) for every natural number n. That is, for every n, out
of the 2n+1 − 1 possible strings of length ≤ n, only polynomially many (a tiny fraction) are
in L. In this problem, you will prove and explore some consequences of Fortune’s Theorem,
which says that the existence of a coNP-complete sparse language implies P = NP.

So let’s get started! Suppose there exists a coNP-complete language L such that there is
a polynomial p such that |L∩{0, 1}≤n| ≤ p(n) for every n. Consider the coNP-complete lan-
guage TAUT = {φ | φ is a Boolean formula s.t. ∀x φ(x) = 1}. Since L is coNP-complete,
there is a poly-time reduction f from TAUT to L, and therefore some polynomial r such that
|f(φ)| ≤ r(|φ|) for every formula φ.

(a) Briefly explain why, in order to prove Fortune’s Theorem, it suffices to exhibit a poly-
time algorithm for TAUT. (1 point)

1

To give such an algorithm, first consider (as a thought experiment) building the downward
self-reduction tree for an input formula. That is, given a Boolean formula φ(x1, . . . , xn), let
φ0 = φ(0, x2, . . . , xn) and φ1 = φ(1, x2, . . . , xn). Then φ ∈ TAUT ⇐⇒ φ0 ∈ TAUT and
φ1 ∈ TAUT. We can recurse on the formulas φ0 and φ1, ultimately giving us a tree of depth
n such that the original formula is a tautology iff all the leaves evaluate to 1, but this takes
exponential time as there are 2n leaves.

Instead, we’re going to prune the tree as we explore it, ensuring that the number of
formulas explored at each depth is bounded by a polynomial. We will take this polynomial
to be (roughly) t(n) := p(r(2n + 5)), for reasons that will hopefully become clear. Suppose
that at some level of the tree, we’ve materialized a collection of “active” formulas φ0, . . . , φk

such that φ ∈ TAUT ⇐⇒ φi ∈ TAUT for all i = 0, 1, . . . , k. If k ≤ t(n), then we recurse on
to the next level of the tree. Otherwise, if k > t(n), we will prune the set of active formulas
by one.

Here’s how to do the pruning. For each i = 1, . . . , k (note that we are not including
i = 0), let si = f((φ0)∧ (φi)). That is, we apply the reduction f to the formula obtained by
taking the logical AND of formulas φ0 and φi.

(b) Explain why if every active formula φ0, . . . , φk has length at most n, then every string
s1, . . . , sk has length at most r(2n+ 5). (1 point)

Examining the collection of resulting strings s1, . . . , sk, there are two possible cases:

Case 1: All strings s1, . . . , sk are distinct.

Case 2: There exists a pair of strings si, sj where si = sj but i ̸= j.

(c) Show that in Case 1, we can automatically conclude that φ is NOT a tautology, and
therefore we can halt and reject. (2 points)

(d) Show that in Case 2, it is safe to prune, say, the formula φi. That is, the original
formula φ is a tautology if and only if φ0, . . . , φi−1, φi+1, . . . , φk are all tautologies. (2
points)

Thus, if k > t(n), our algorithm either halts or reduces the number of active formulas by 1.

(e) Briefly analyze the runtime of this algorithm to conclude that it indeed decides TAUT
in polynomial time. (2 points)

(f) A natural question you might ask about TAUT (or SAT or whatever) is whether there
is a poly-time algorithm that correctly solves it on most instances. More specifically,
let’s say that an algorithm A almost solves TAUT (with one-sided error) if:

� φ is not a tautology =⇒ A(φ) = 0. (I.e., A always produces the correct answer
of 0 whenever φ is not a tautology.)

2

� There exists a polynomial p(n) such that for every n, we have A(φ) = 0 for at
most p(n) tautologies φ of length at most n. (I.e., A produces the correct answer
of 1 for all but polynomially many tautologies φ.)

Use Fortune’s Theorem to show that if there is a poly-time algorithm that almost
solves TAUT with one-sided error, then P = NP. (3 points)

(g) (*Bonus*) Show that the conclusion above holds even for algorithms A with two-sided
error. That is, if there is a polynomial p(n) and a poly-time algorithm A such that for
every n,

� A(φ) = 0 for at most p(n) tautologies φ of length n, and

� A(φ) = 1 for at most p(n) non-tautologies φ of length n,

then P = NP.

3

