
CS 535: Complexity Theory, Fall 2023

Homework 6
Due: 11:59PM, Tuesday, October 31, 2023.

Reminder. Homework must be typeset with LATEX preferred. Make sure you understand
the course collaboration and honesty policy before beginning this assignment. Collaboration
is permitted, but you must write the solutions by yourself without assistance. You must
also identify your collaborators. Assignments missing a collaboration statement will not be
accepted. Getting solutions from outside sources such as the Web or students not enrolled
in the class is strictly forbidden.

Problem 0 (Term Paper Topic). Your term paper topic and partner (if applicable) are due
on Gradescope at the same time this homework assignment is. Instructions for the term paper
are here: https://cs-people.bu.edu/mbun/courses/535_F23/handouts/term_paper.pdf
and a list of suggested topics is here: https://piazza.com/class/lm5tyuo0a7j2fu/post/
89.

Problem 1 (NC1 Captures Poly-Size Boolean Formulas). For this problem, all circuits have
fan-in 2 {∧,∨} gates, and you can assume all negations are pushed to the bottom. A Boolean
formula is a special case of a circuit where every intermediate ∧ or ∨ gate has fan-out 1. To
make the accounting in this problem easier, we’ll write “C has s gates” to mean that C has
s {∧,∨} gates, explicitly not including the 2n inputs and their negations.

(a) Suppose f : {0, 1}n → {0, 1} is computed by a circuit with s gates and depth d. Show
that f is also computed by a formula of size O(2d · s). (2 points)

Hint: Induction on the depth.

(b) Now we’ll get to work on the converse, showing how to convert a formula into a low-
depth circuit. First, prove the following fact about binary trees: For every binary
tree with s vertices, there exists a vertex v such that the subtree rooted at v contains
between s/3 and 2s/3 vertices. (2 points)

(c) Use part (b) to show that every formula F with s gates has an equivalent formula
F ′ = (A∧B)∨ (C ∧D), where each subformula A,B,C,D has at most 2s/3 gates. (2
points)

(d) Use part (c) recursively to show that every formula with s gates has an equivalent
formula of depth O(log s) and poly(s) gates. (2 points)

(e) Combine parts (a) and (d) to conclude that a language is in the complexity class NC1

if and only if it is also computable by a poly-size family of formulas. (2 points)

1

https://cs-people.bu.edu/mbun/courses/535_F23/handouts/term_paper.pdf
https://piazza.com/class/lm5tyuo0a7j2fu/post/89
https://piazza.com/class/lm5tyuo0a7j2fu/post/89

Problem 2 (More Time-Space Tradeoffs). In class (and in Arora-Barak) we saw that
NTIME(n) ̸⊆ TISP(n1.2, n0.2), and hence SAT cannot be solved by a deterministic TM
running in, say, time O(n1.1) and space O(n0.1) simultaneously. In this problem, you’ll
similarly prove that co-nondeterministic linear time cannot be simulated in small nondeter-
ministic time and space, and how far you can push the technique to get different tradeoffs.
Assume every function you encounter in this problem is time- and space-constructible.

For time bound T (n) and space bound S(n), define NTISP(T, S) to be the class con-
sisting of languages L such that L is decidable by a nondeterministic TM running in both
time O(T (n)) and space O(S(n)). Define coNTIME(T (n)) = Π1TIME(T (n)) to be the
class of languages decidable by a alternating TM of Π1 type in time O(T (n)).

(a) Generalize Claim 5.11.1 in Arora-Barak to prove that for T (n) ≥ n2 and S(n) ≥ log n,
we have NTISP(T, S) ⊆ Σ2TIME(

√
TS). (3 points)

(b) Generalize Claim 5.11.2 in Arora-Barak to prove that if coNTIME(n) ⊆ NTIME(nc)
for some c > 1, then Σ2TIME(f(n)) ⊆ NTIME((f(n))c). (3 points)

(c) First we’ll see how large we can make the time requirement. Use parts (a) and (b),
together with the following Fact (which you can assume without proof), to prove that
for every c <

√
2, there exists a δ > 0 such that coNTIME(n) ̸⊆ NTISP(nc, nδ). (2

points)

Fact 1. For all positive constants b > a > 0, we have

coNTIME(nb) ̸⊆ NTIME(na).

Hint: Note that δ is allowed to depend on c. You’ll want to choose δ small enough so
that c(c+ δ) < 2.

You don’t have to show it, but this implies that TAUT cannot be solved by a nonde-
terministic TM using O(n1.41...) time and no(1) space.

(d) Now we’ll see how far we can push the space requirement. Prove that for every c < 1,
there exists a δ > 0 such that coNTIME(n) ̸⊆ NTISP(n1+δ, nc). This result implies
that TAUT cannot be solved by a nondeterministic algorithm using n1+o(1) time and
O(n0.999) space. Hint: This time, choose δ small enough so that (c+1+ δ)(1+ δ) < 2.
(2 points)

(e) (*Bonus*) Prove Fact 1.

2

Problem 3 (*Bonus* Improved Deterministic Time-Space Tradeoffs). Let’s go back to the
setting of deterministic time-space tradeoffs for NTIME(n). In this problem, you’ll see how
to get even better tradeoffs by repeatedly trading alternations for time.

(a) Suppose NTIME(n) ⊆ DTIME(nc) for some c > 1. Show that TISP(T, S) ⊆
coNTIME((TS2)c

2/(2+c)). Use this to conclude that NTIME(n) ̸⊆ TISP(nc, no(1))
whenever c3 < 2 + c, i.e., c < 1.521 Hint: Let C0, Cf be the start and accept
configurations of a deterministic TM running in time T . Then Cf is reachable from
C0 in T time steps iff for all C ′ ̸= Cf , we have that C ′ is not reachable from C0 in T
time steps.

(b) Generalize the above argument inductively to show thatNTIME(n) ̸⊆ TISP(nc, no(1))
whenever c(c− 1) < 1, i.e., c < ϕ = 1.618

3

