
CS 535: Complexity Theory, Fall 2023

Homework 7
Due: 11:59PM, Tuesday, November 7, 2023.

Reminder. Homework must be typeset with LATEX preferred. Make sure you understand
the course collaboration and honesty policy before beginning this assignment. Collaboration
is permitted, but you must write the solutions by yourself without assistance. You must
also identify your collaborators. Assignments missing a collaboration statement will not be
accepted. Getting solutions from outside sources such as the Web or students not enrolled
in the class is strictly forbidden.

Problem 1 (Circuit Lower Bounds for PH). In this problem, you will prove that PH can
compute languages with high circuit complexity. Specifically, you will show that for every
integer k ≥ 1, there is a language in Σp

2 that cannot be computed by circuits of size at most
nk. (Curiously, this is a non-constructive proof...we know the language exists, but we don’t
know what it is. For more context, note that the best circuit size lower bound we have for
SAT is roughly 5n.)

(a) Show that for every sufficiently large n, there exists a function f : {0, 1}n → {0, 1}
that is computed by a circuit of size at most nk+1, but not computed by any circuit
of size at most nk. Hint: Use the nonuniform hierarchy theorem (Theorem 6.22 in
Arora-Barak). (1 point)

(b) Let C,C ′ be circuits, both on n-bit inputs. Say that C ′ comes lexicographically before
C, written C ′ <lex C, if the string encoding C ′ precedes the string encoding C in the
lexicographic ordering. Define the language L to consist of all strings x such that
C(x) = 1, where C is the lexicographically first circuit (on |x|-bit inputs) of size at
most |x|k+1 that is not computed by any circuit of size at most |x|k.
By construction, we have that L /∈ SIZE(nk). Show that the language L ∈ Σp

4, and
thereby conclude that Σp

4 ̸⊆ SIZE(nk). (6 points)

Hint: C is the lexicographically first circuit of size at most nk+1 that is not computed
by any circuit of size at most nk if: |C| ≤ nk+1 and for all C ′ <lex C where |C ′| ≤ nk+1,
there exists a smaller circuit C ′′ of size ≤ nk such that C ′′ ≡ C ′.

(c) Combine part (b) with the Karp-Lipton Theorem (NP ⊆ P/poly =⇒ PH = Σp
2) to

show that Σp
2 ̸⊆ SIZE(nk). (3 points)

(d) Does part (c) imply Σp
2 ̸⊆ P/poly? Explain your answer. (2 points)

Problem 2 (Characterizing ZPP). Recall that we defined the class ZPP to consist of
languages that are decidable by probabilistic TMs in expected polynomial time. In this
problem, you will explore two different alternative characterizations of this class.
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(a) First, let us complete the proof we started in class (Thursday, 11/2) that ZPP =
RP ∩ coRP. We already showed in class that ZPP ⊆ RP ∩ coRP. For the opposite
containment, let L ∈ RP ∩ coRP be decided by an RP algorithm M0 and a coRP
algorithmM1, each running in (worst-case) time p(n) for some polynomial p. Show that
the following is a zero-error randomized algorithm deciding L in expected polynomial
time, and thus RP ∩ coRP ⊆ ZPP. (4 points)

On input x:
Repeat the following indefinitely:

1. Run M0 on input x. If it accepts, accept; else, continue.

2. Run M1 on input x. If it rejects, reject; else, continue.

(b) An abstaining probabilistic TM is like a normal probabilistic TM for a decision problem,
except that it may output any of the answers 0, 1, or ? (standing for “I abstain from
answering”). Show that a language L ∈ ZPP if and only if there exists a abstaining
probabilistic TM M running in worst-case polynomial time such that

� If x ∈ L, then on input x, the TM M always outputs either 1 or ?,

� If x /∈ L, then on input x, the TM M always outputs either 0 or ?, and

� For every input x, we have Pr[M(x) = ?] ≤ 1/3.

That is, when M produces an answer of 0 or 1, it is always correct, and on every input
it abstains from answering with probability at most 1/3. (4 points)
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