Problem 0 (Term Paper). Reminder that a draft of your term paper is due on Tuesday, Nov. 21. Of course it’s “just” a draft, but the more fleshed out it is, the more useful feedback we (and your classmates) will be able to give you.

Problem 1 (Consequences of Valiant-Vazirani). Recall the Valiant-Vazirani Theorem, which says that there is a probabilistic polynomial-time algorithm A that takes as input an n-variable Boolean formula ϕ and outputs another n-variable formula such that

$$\begin{align*}
\phi \in \text{SAT} &\implies \Pr[A(\phi) \in \text{USAT}_Y] \geq \frac{1}{8n} \\
\phi \notin \text{SAT} &\implies \Pr[A(\phi) \in \text{USAT}_N] = 1.
\end{align*}$$

(a) Adapt Definition 7 (PromiseBPP) from Lecture Notes 17 to the class RP to define an analogous class PromiseRP. (1 point)

(b) Use the VV Theorem to show that $\text{NP} = \text{RP}$ if and only if $\text{USAT} \in \text{PromiseRP}$. (3 points)

(c) (*Individual Review: No collaboration allowed for this part only*) A non-adaptive oracle Turing machine M^O may write a sequence of strings q_1, \ldots, q_k to its oracle tape and in at most one point in its computation obtain the sequence of answers $O(q_1), \ldots, O(q_k)$ (where $O(q_i)$ stands for the answer to the question “Is $q_i \in O$?”). That is, all the queries to the oracle have to be issued in a single batch, so the selection of a query cannot depend on the answers to previous queries.

Describe a deterministic poly-time non-adaptive oracle TM M^{SAT} that, given a Boolean formula $\phi \in \text{USAT}_Y$, outputs a satisfying assignment to ϕ after making $O(n)$ queries to its SAT oracle. (2 points)

(No need to explain correctness or runtime for this problem, as long as they’re reasonably clear from the description of your algorithm.)
(d) Use part (c) and the VV Theorem to describe a randomized poly-time non-adaptive oracle TM \(R^{\text{SAT}} \) that, given a Boolean formula \(\varphi \in \text{SAT} \), outputs a satisfying assignment to \(\varphi \) with probability at least \(\Omega(1/n) \) after making \(O(n) \) queries. (2 points)

(No need to explain correctness or runtime for this problem, as long as they’re reasonably clear from the description of your algorithm.)

Problem 2 (Approximate Counting with an NP Oracle). As we’ll see on Thursday, an important technical tool in the proof of the VV Theorem is pairwise independent hash functions. In the following problem, you may assume that for every \(k \leq n \), there is a family of functions \(H_{n,k} \) such that for every pair of inputs \(x, x' \in \{0,1\}^n \) and every pair of possible outputs \(y, y' \in \{0,1\}^k \), we have

\[
\Pr_{h \leftarrow H_{n,k}} [h(x) = y \land h(x') = y'] = \Pr_{h \leftarrow H_{n,k}} [h(x) = y] \cdot \Pr_{h \leftarrow H_{n,k}} [h(x') = y'] = 2^{-k} \cdot 2^{-k} = 2^{-2k}.
\]

Moreover, each function \(h \) can be described by a poly\((n)\)-size circuit (and hence, be evaluated efficiently), and can be sampled from \(H_{n,k} \) in poly\((n)\) time.

(a) Show that for every subset \(S \subseteq \{0,1\}^n \), and every parameter \(t > 0 \), we have

\[
\Pr_{h \leftarrow H_{n,k}} [\{x \in S | h(x) = 0^k\} \bigcup \{x \in S | h(x') = 0^k\} \geq t] \leq \frac{1}{t^2} \cdot 2^{-k} \cdot |S|.
\]

Hint: The expression \(\{x \in S | h(x) = 0^k\} \) counts the number of elements in \(S \) that hash to the all-0 string. The all-0 string is one out of \(2^k \) possible hash images, so the expression \(2^{-k} \cdot |S| \) is the expected value of this quantity. So this statement just says that the number of elements that hash to 0 concentrates around its expectation. Use Chebyshev’s inequality to control this. Another helpful fact here is that if \(X_1, \ldots, X_m \) are pairwise independent random variables, i.e., \(\Pr[X_i = a \land X_j = b] = \Pr[X_i = a] \cdot \Pr[X_j = b] \) for all \(i, j, a, b \), then \(\text{Var}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \text{Var}[X_i] \). (6 points)

(b) For a Boolean circuit \(C : \{0,1\}^n \rightarrow \{0,1\} \), define \(F(C) = |\{x \in \{0,1\}^n | C(x) = 1\}| \) to count the number of inputs that cause \(C \) to evaluate to 1. Use part (a) to show that the following problem ApxC (short for approximate counting) is in \textbf{PromiseBPP}^{\text{NP}}:

\[
\text{ApxC}_Y = \{(C, k) | F(C) \geq 8 \cdot 2^k\}
\]
\[
\text{ApxC}_N = \left\{(C, k) | F(C) \leq \frac{1}{8} \cdot 2^k\right\}.
\]

Hint: Use the fact that the satisfiability problem for Boolean circuits is in \textbf{NP}. (6 points)
(c) (Bonus Problem) Use part (b) to show that there exists a constant $\alpha > 0$ and a poly-time randomized NP-oracle algorithm that, given as input a Boolean circuit C, estimates $F(C)$ to within a multiplicative factor of α with probability at least $3/4$. That is,

$$\Pr \left[\frac{1}{\alpha} \cdot F(C) \leq M^A(C) \leq \alpha \cdot F(C) \right] \geq \frac{3}{4}.$$

(d) (Bonus Problem) Show that there is a poly-time randomized NP-oracle algorithm that, given as input a Boolean circuit C, outputs \bot with probability at most $1/2$ and, conditioned on not outputting \bot, outputs a uniformly random x for which $C(x) = 1$.
