
CS 535: Complexity Theory, Fall 2023

Homework 8
Due: 11:59PM, Tuesday, November 15, 2023.

Reminder. Homework must be typeset with LATEX preferred. Make sure you understand
the course collaboration and honesty policy before beginning this assignment. Collaboration
is permitted, but you must write the solutions by yourself without assistance. You must
also identify your collaborators. Assignments missing a collaboration statement will not be
accepted. Getting solutions from outside sources such as the Web or students not enrolled
in the class is strictly forbidden.

Problem 0 (Term Paper). Reminder that a draft of your term paper is due on Tuesday,
Nov. 21. Of course it’s “just” a draft, but the more fleshed out it is, the more useful feedback
we (and your classmates) will be able to give you.

Problem 1 (Consequences of Valiant-Vazirani). Recall the Valiant-Vazirani Theorem, which
says that there is a probabilistic polynomial-time algorithm A that takes as input an n-
variable Boolean formula ϕ and outputs another n-variable formula such that

φ ∈ SAT =⇒ Pr[A(φ) ∈ USATY ] ≥
1

8n
φ /∈ SAT =⇒ Pr[A(φ) ∈ USATN ] = 1.

(a) Adapt Definition 7 (PromiseBPP) from Lecture Notes 17 to the class RP to define
an analogous class PromiseRP. (1 point)

(b) Use the VV Theorem to show that NP = RP if and only if USAT ∈ PromiseRP. (3
points)

(c) (*Individual Review: No collaboration allowed for this part only*) A non-adaptive
oracle Turing machine MO may write a sequence of strings q1, . . . , qk to its ora-
cle tape and in at most one point in its computation obtain the sequence of answers
O(q1), . . . ,O(qk) (where O(qi) stands for the answer to the question “Is qi ∈ O?”).
That is, all the queries to the oracle have to be issued in a single batch, so the selection
of a query cannot depend on the answers to previous queries.

Describe a deterministic poly-time non-adaptive oracle TMMSAT that, given a Boolean
formula φ ∈ USATY , outputs a satisfying assignment to φ after making O(n) queries
to its SAT oracle. (2 points)

(No need to explain correctness or runtime for this problem, as long as they’re reason-
ably clear from the description of your algorithm.)
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(d) Use part (c) and the VV Theorem to describe a randomized poly-time non-adaptive or-
acle TM RSAT that, given a Boolean formula φ ∈ SAT, outputs a satisfying assignment
to φ with probability at least Ω(1/n) after making O(n) queries. (2 points)

(No need to explain correctness or runtime for this problem, as long as they’re reason-
ably clear from the description of your algorithm.)

Problem 2 (Approximate Counting with an NP Oracle). As we’ll see on Thursday, an
important technical tool in the proof of the VV Theorem is pairwise independent hash func-
tions. In the following problem, you may assume that for every k ≤ n, there is a family of
functions Hn,k such that for every pair of inputs x, x′ ∈ {0, 1}n and every pair of possible
outputs y, y′ ∈ {0, 1}k, we have

Pr
h←Hn,k

[h(x) = y ∧ h(x′) = y′] = Pr
h←Hn,k

[h(x) = y] · Pr
h←Hn,k

[h(x′) = y′] = 2−k · 2−k = 2−2k.

Moreover, each function h can be described by a poly(n)-size circuit (and hence, be evaluated
efficiently), and can be sampled from Hn,k in poly(n) time.

(a) Show that for every subset S ⊆ {0, 1}n, and every parameter t > 0, we have

Pr
h←Hn,k

[∣∣|{x ∈ S | h(x) = 0k}| − 2−k · |S|
∣∣ ≥ t

]
≤ 1

t2
· 2−k · |S|.

Hint: The expression |{x ∈ S | h(x) = 0k}| counts the number of elements in S that
hash to the all-0 string. The all-0 string is one out of 2k possible hash images, so
the expression 2−k · |S| is the expected value of this quantity. So this statement just
says that the number of elements that hash to 0 concentrates around its expectation.
Use Chebyshev’s inequality to control this. Another helpful fact here is that that if
X1, . . . , Xm are pairwise independent random variables, i.e., Pr[Xi = a ∧ Xj = b] =
Pr[Xi = a] · Pr[Xj = b] for all i, j, a, b, then Var[

∑m
i=1 Xi] =

∑m
i=1Var[Xi]. (6 points)

(b) For a Boolean circuit C : {0, 1}n → {0, 1}, define F (C) = |{x ∈ {0, 1}n | C(x) = 1}|
to count the number of inputs that cause C to evaluate to 1. Use part (a) to show that
the following problem ApxC (short for approximate counting) is in PromiseBPPNP:

ApxCY = {⟨C, k⟩ | F (C) ≥ 8 · 2k}

ApxCN =

{
⟨C, k⟩ | F (C) ≤ 1

8
· 2k

}
.

Hint: Use the fact that the satisfiability problem for Boolean circuits is in NP. (6
points)
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(c) (Bonus Problem) Use part (b) to show that there exists a constant α > 0 and a
poly-time randomized NP-oracle algorithm that, given as input a Boolean circuit C,
estimates F (C) to within a multiplicative factor of α with probability at least 3/4.
That is,

Pr

[
1

α
· F (C) ≤ MA(C) ≤ α · F (C)

]
≥ 3

4
.

(d) (Bonus Problem) Show that there is a poly-time randomized NP-oracle algorithm
that, given as input a Boolean circuit C, outputs ⊥ with probability at most 1/2 and,
conditioned on not outputting ⊥, outputs a uniformly random x for which C(x) = 1.
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